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Transportation is Now The Largest Source
of U.S. GHG Emissions

Total U.S. Greenhouse Gas Emissions

by Economic Sector in 2017

Agriculture

9%\

Commercial &
Residential

12% O\

Transportation
29%

Industry /
22%

Electricity

/ 28%

4

/

Carnegie Mellon University
Civil & Environmental Engineering

Source: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions




Transportation is Hard to Decarbonize

Electricity:
transit

Diesel: primarily from trucks

Jet Fuel & Aviation Gas

Gasoline: primarily from Light-Duty Vehicles

80% below 2005 transportation emissions
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Low-Carbon Electricity Can Enable
Deep GHG Reductions with EVs

* 0.3kWh/miEV

* 30 mpgICV
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Oil Use Accounts for 39% of

Transportation Externalities

Congestion
($1.46)

Crashes
(63 ¢)

Source: Updated from Anderson et al., 2014, Uses NHTSA 2017-2025 Estimates, updated SCC Costs,
GREET WTW emissions, assumes 25 mpg, $2013
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However, Public Charging Stations can
be Expensive

* Cost for a single vehicle
240 volt charger installed
can vary between $4,000
and $20,000

* DC Fast charging can cost
between $S40,000 and
$90,000

Source: Smith, M., and Castellano, J. (2015).
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It is Challenging to Reduce EV Charging
Infrastructure Costs

* Vehicles take up the chargers physical space

and ports until someone moves/disconnects
them

* Vehicles need to either charge near the
driver’s destination or must charge in
comparable times to gasoline pumps

* Level 4 & 5 automation could allow for a
reduction in the number of necessary chargers
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What We Mean When We Say Level “X” AV

Level Name Who is Who is Who
Driving? Monitoring? | Intervenes?

0 No & & &
Automation

1 Driver Assist @@ @ @

2 | | Partia @ & &
Automation

3 Conditional . g -
Automation L L @

4 High <& ¥© ¥© -
Automation L L %@

AN - -

Automation
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Research Question

How can the various levels of vehicle
automation affect the economics and
energy use of charging EVs?
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How Vehicle Automation may Affect
EV Charging

e Level 0-3 Automation

—The charger is occupied until the commuter
moves it.

—The commuter must walk from the parking
spot to their destination and back
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How Vehicle Automation may Affect
EV Charging

 Level 4 Automation
— The vehicle can move itself on
and off the charger

— The commuter must still walk S
after parking i

e Level 5 Automation

— The vehicle can move itself on
and off the charger

— The vehicle and drop off and
piCk up the Commuter https://www.media.volvocars.com/global/

en-gb/media/pressreleases/49569/photos
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* We investigated King

County,

Data and Methods

ashington

We used the 2014

Puget Sound
Household travel
survey data directly
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Trip Characteristics

e 2,300 trips Total

* 1,900 parking spaces demanded during peak
hour

* Max possible modeled charger utilization is
31%

— Based on commuter distances and charge
switching time

Carnegie Mellon University
Civil & Environmental Engineering




Most Drivers in the Sample Commute

Short Distances

400

300

200

Number of Trips

100

Commute Miles

Source: 2014 Puget Sound HHTS
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Almost All Sampled Commuters Park
Long Enough to Fully Charge
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Hours Parked

Source: 2014 Puget Sound HHTS
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Charger Selection

 AC Level 1 /120 YV Charging
— About 5 miles per hour
— <52,000 (significantly less for new construction)

* AC Level 2 /240V Charging

— About 20 miles per hour
— About $10,000 per charger

* DC Fast Charging
— About 150 miles per hour
— About $50,000 per charger
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Costs are Evaluated for Charger Station

Owners as well as Drivers

e Charger Owner Costs
— Real Estate

— Amortized Capital Equipment and Installation Costs

* Number of Chargers
e 15 years with a 4.1% discount rate

* Driver Costs
— Walking

* Derived from median income and time
— Additional Vehicle Depreciation and Energy Costs
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King County Assessed Real Estate
Prices
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Optimization Methods

e We know when each commuter arrives and
leaves each Travel Analysis Zone (TAZ)

e We assume each commuter will drive an
electric vehicle

e We want to minimize the total costs of Drivers
and Charger Owners
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Optimization Methods

* Level 0-3 Automation (No Self-Driving
Vehicles)

— Minimize the total costs of walking and charger
owners

* min [Z;onei(Zéonej{COStwalkif * Tripsij}) +
Owner(C ost]

— One charger is required for every peak vehicle
— Max walking distance of 0.25 miles
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Optimization Methods

* Level 4 automation (Self Parking and Charging
Vehicles)

— Same as Level 0-3 but chargers can now serve
multiple vehicles

» min |S}(Z{costWalky; » numTrips;;}) +
Owner(C ost]

* Vehicles can queue up to as charger with a one minute
switching time after charging is finished

* Max walking distance of 0.25 miles
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Optimization Methods

* Level 5 Automation (Completely Self-Driving
and Charging Vehicles)

— Decouple commuter destination from parking
location

— Vehicles energy and depreciation costs are ~20
times less per mile than walking

— min [Z{(Z;{COStDT'iveij * numTTiPSij}) T
OwnerC ost]
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Results: Level 0/No Automation

e S1.75 M Total Costs

— Almost all is charger owner because of
single charger per vehicle and max walking
distance constraint

* 1,900 Chargers

— 1.2 trips per charger

—4.4% Utilization
* Time that the charger is actually used
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Results: Level 4 Automation

e $930,000 Charger Owner

e S940,000 Total Costs

— Commuter costs remain bounded by
walking distance

* 680 Chargers

— 3.5 Trips per charger
—13% Utilization
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Results: Level 5 Automation

e S440,000 Charger Owner

e S540,000 Total Costs
— Commuter Costs increased by a factor of 10

* 330 Chargers
— 7.5 Trips per charger

—27% Utilization
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Reduction in Number of Chargers: Level O-
4 Vehicle Automation
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Reduction in Number of Chargers: Level O-
5 Vehlcle Automatlon
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Automation Enables Demand
Smoothing

* Assume 35 kWh / 100 mi
2,500
2,000
1,500
1,000
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—-—AV 0-3 —AV4 AV 5

kWh Demanded
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Implications

* Optimizing EV infrastructure for AVs
enables smoothing of peak EV electric
demand

* Similar results could be gained through
smart charging technology

—Though those have their own cost
structures and technical limitations
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Implications

* Automation allows for considerable
decreases in the total chargers and charger
owner cost
— Number of chargers reduced from 1,900 to 330
—S$1.8 M to S440,000

* But shifts a portion of the costs to
commuters

* How do we best incentivize the social good without
harming travelers?
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Limitations

 Traffic demand taken direct from HHTS

—Demand is shown to be more concentrated
than reality

—Demand is much smaller than reality

 Poor real estate data
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Questions?
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Appendix Slides
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Data Sources

e |Infrastructure Costs
— DOE Report

* GIS Data and Trip Distribution/Characteristics
— Puget Sound Household Travel Survey
— Census Bureau
— King County GIS
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Commuter Arrival and Departure
Times
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Reduction in Number of Chargers:

mation
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Optimization Detailed

Carnegie Mellon University
Civil & Environmental Engineering

38




No Automation (Level 0-3 AV)

Objective: — ¢ =d;j* E x 2 %260, (walking costs)
_ min[Zﬁ(Zf{cU *xyij* K;}) + L] - wy = { 0 ell]se } (binary check if anyone walked
ici between i and j)
DeC|S|OnS: . solved as {w;; * 900,000 > y;;}

yij =peak parking demand of zone i served in location j, o In put Pa rameters:

(stations to build in j), integer —  D; = parking demand at zone i, peak vehicles, count

— A; = real estate cost per parking space and charger at
L] ]
What we Want: ocation ], $
- X = g)’ij — B = costs per charging station, equipment and
. installation, $
ConSt raints: — d;j = walking distance between zone i and location j,
- Z;(yij) = D;,V ], (all parking demand served) miles

—  E = cost of walking, il
- Z{(yi]-) < x;,Vj, (charging supply constraint) cost of walking, $ / mile
L . . . — W = maximum walking distance, miles
—  ¥;j 2 0ViVj (non-negativity constraint on parking

demand) —  K; =average number of trips per peak trip in zone i, can

be fractional, count

3 S . . . . . :
%j = 0] (non negative station assignment) —  (A]|P, 1) =annuity value of current lump sum, $

- dij*wij <= W ViV j(maximum walking distance)

Given:
- L= 25 (xj * (A]- + B) * (A|P, i)),(owner cost)
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Self Parking (level 4 AV)

. Objective:
- min[Zi(E}{ey *vi}) + 1]
. Decisions:
yij =total trips ending in zone i served in location j, count
. What we Want:

o = Eivy)
] - U*q ’

. Constraints:
Z; (ymii j) > D;, V1, (all parking demand served)

integer

- Z{ (ymiij) < Q;,Vj, (charging supply constraint)
—  ¥ij =2 0ViVj(non-negativity constraint on parking
demand)
—  x; =2 0V]j(non-negative station assignment), integer
- dijxwj <= WV iV j(maximum walking distance)
. Given:

- L= 25 (xj * ((Aj + B) * (AP, i) + Cw)> , (owner cost)
- ¢jj =d;j* E * 2% 260, (walking costs)

1, if y;; >0
- :{ if yij

0, else
between i and j)

solved as {w;; * 900,000 = y;;}

}, (binary check if anyone walked

Carnegie Mellon University
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Qj = xj * U * q, zone charge capacity, miles

Ymiy; = Vij * Davgi

Input Parameters:

D; = parking demand at zone i, peak driver miles

Dqlvgi =mean trip distance for trips ending in zone i,
miles

Aj :.rea_l estate cost per parking space and charger at
location j, $

B = costs per charging station, equipment and
installation, $

d;; = walking distance between zone i and location j,
miles

E = cost of walking, S / mile

W = maximum walking distance, miles

U = maximum charger utilization rate, %

q =charger capacity, miles per shift

(A|P, i) =annuity value of current lump sum, $

C, = cost of wireless AV communication equipment
maintenance, $ / year

40




Self Driving (Level 5 AV)

. Objective: —  Qj = xj * U * q, zone charge capacity, miles
- min[Zﬁ(Zf{cU * yij}) + L] — Ymi T Vij * Dgyyg;
. Decisions: . Input Parameters:
—  y;j =total trips ending in zone i served in location j, count —  D; = parking demand at zone i, peak driver miles
. What we Want: —  Dgyg; =mean trip distance for trips ending in zone i, mile
; —  A; = real estate cost per parking space and charger at
0377 location j S
J Uxq — B = costs per charging station, equipment and

installation, $
o Constraints: - dij = walking distance between zone i and location j,

] ) miles
- Z}' (ymiij) 2 D;, v 1, (all parking demand served) — U = maximum charger utilization rate, %

— g =charger capacity, miles per shift

—  F, =fuel economy, kWh / mi

— P, =price of electricity, $ / kWh

—  (A]P, 1) =annuity value of current lump sum, $

. —  C,, =cost of wireless AV communication equipment
. Given: maintenance, S/ year

- L= Zf (xj * ((Aj + B) x (A|P,1) + Cw)) , (owner cost)

—  ¢ij = d;j * Fg * Py x 2 % 260, (drop-off/pick-up energy
cost, S)

1 if yij > }

e
between i an(fj)g
*+  solved as {w;; * 900,000 > y;;}

- Z! (J’miu) < Q;,Vj, (charging supply constraint)

- Yij=20ViVvj (non-negativity constraint on parking
demand)

— x; = 0V j(non-negative station assignment)

, (binary check if anyone walked
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