Generating Urban Mobility Data Sets Using Scalable GANs

Abhinav Jauhri & John Paul Shen ECE Department Carnegie Mellon University

{ajauhri, jpshen}@cmu.edu

Objective

Generate city-scale human mobility data using Generative Adversarial Networks (GANs) for Intelligent Transportation Systems.

Outline

- Motivation
- Spatial and Temporal Variations
- Generative Adversarial Networks (GANs)
- Ride Requests to Images
- Experiments
- Conclusions

Outline

Motivation

- Spatial and Temporal Variations
- Generative Adversarial Networks (GANs)
- Ride Requests to Images
- Experiments
- Conclusions

Motivation

- Tackle challenges related to urban transportation in large cities --
 - How to perform pooling?
 - What are the savings of pooling passengers in terms of travel distance reduction, vehicle count reduction?
 - What are the savings of placing vehicles smartly?
 - Many more ...
- Access of data for researchers and civic authorities to conduct experiments related to Intelligent Transportation Systems (ITS).
- Modeling challenge -- tackle a real-world problem using GANs

UNIVERSITY TRANSPORTATION CENTER

Outline

- Motivation
- Spatial and Temporal Variations
- Generative Adversarial Networks (GANs)
- Ride Requests to Images
- Experiments
- Conclusions

Distribution of pickup locations in San Francisco

Distribution of pickup locations in San Francisco

A USDOT NATIONAL UNIVERSITY TRANSPORTATION CENTER Every red dot represents the source of a ride request. Ride requests aggregated over a **5-minute time snapshot at 5pm**.

Distribution of pickup locations in San Francisco

Downtown San Francisco

Ride requests aggregated over a **5-minute time snapshot at 6pm**.

Downtown San Francisco

Ride requests aggregated over a **5-minute time snapshot at 2am**.

Volume of Ride Requests over a week

Quantity of ride requests for multiple weeks

UNIVERSITY TRANSPORTATION CENTER

A USDOT NATIONAL

Observation #1

Human mobility patterns are highly dynamic both spatially and temporally.

Outline

- Motivation
- Spatial and Temporal Variations
- Generative Adversarial Networks (GANs)
- Ride Requests to Images
- Experiments
- Conclusions

Generative Adversarial Networks: Sample Generation

Training Data (CelebA) Sample Generator (Karras et al, 2017)

Generative Adversarial Networks: Image Super Resolution

Image generated using GAN (left) is almost identical to the original (right) [Ledig et. al., CVPR 2017]

Generative Adversarial Networks: Image Inpainting

Real Input Ours NN

Mobility21

Image inpainting using GANs [Yeh et. al., CVPR 2017]

Generative Adversarial Networks: Framework

GANs for Human Mobility

Objective -- How to generate series of images for consecutive time steps representing human mobility data?

Outline

- Motivation
- Spatial and Temporal Variations
- Generative Adversarial Networks (GANs)
- Ride Requests to Images
- Experiments
- Conclusions

Ride Requests to Images

Each ride request's originating location is represented by a **<latitude, longitude>** on the geographical space. We discretize the map into 50x50 meters represented by a pixel.

Grey scale image where each pixel represents the number of ride requests

Observation #2

Due to spatial independence of each block, all the blocks can be trained in parallel on many CPUs.

Computing Resources for Training on AWS

Experiments performed using --

1. c5.9xlarge - 36 cores; 3.0 GHz Intel Xeon Platinum 8000 Series

1. c5.18xlarge - 72 cores; 3.0 GHz Intel Xeon Platinum 8000 Series

Cost & Performance of Training GANs on AWS

UNIVERSITY TRANSPORTATION CENTER

Cost & Performance of Training GANs on AWS

Instance	Cost (\$/hr)	Training Time (minutes)
c5.9xlarge x6	1.53	34
c5.18xlarge x6	3.06	19

Outline

- Motivation
- Spatial and Temporal Variations
- Generative Adversarial Networks (GANs)
- Ride Requests to Images
- Experiments
- Conclusions

Training Workload for Different Cities

<u>City</u>	<u>Number of blocks (geo divisions)</u> <u>for training</u>
San Francisco	1402
New York	765
Chicago	1155
Los Angeles	1978

Results -- San Francisco Downtown

Temporal Validation: SF & NY

Comparison of real and synthetic ride request volume for a day.

Temporal Validation: Chicago & LA

Comparison of real and synthetic ride request volume for a day.

Conclusions

- Highlighted a novel application of generating data for human mobility using GANs.
- Proposed model trains within **thirty minutes** for all four cities.
- Generated data sets match quite well the spatial and temporal properties of real data sets for all four cities.
- GANs generated data sets can be used by other researchers without privacy concern.

A USDOT NATIONAL

Questions

