Incentivizing Participation in Peer-to-Peer Ridesharing Platform

Fei Fang Carnegie Mellon University School of Computer Science Institute for Software Research feifang@cmu.edu

Joint work with Hoon Oh, Yanhan Tang, Prof. Alexandre Jacquillat Thanks to Weilong Wang, Chun Kai Ling

A USDOT NATIONAL UNIVERSITY TRANSPORTATION CENTER

Smart City

Revolution in Mobility

Mobility Challenge in Non-City Area

- Mobility Challenge in Suburban / Rural Area
 - Lack of public transportation
 - Lack access to essential needs if no private vehicle
- Commercial ridesharing platform cannot provide reliable service
 - Long waiting time
 - High cancellation rate
 - Expensive for daily commute

Community-Based Peer-to-Peer Ridesharing

Community-Based Peer-to-Peer Ridesharing

- Non-commercial platform
- Identify carpooling opportunities
- Community building
- Existing platforms are not satisfactory
 - High overhead / Not flexible / Hard-to-use
 - No up-to-date information / No immediate response
 - No community-specific service
 - Do not leverage latest advances in technology
 - Privacy / Security concerns

Existing Platforms: Share-A-Ride

The **Share-A-Ride** program is a free, computerized service that can match commuters who work in southeastern Pennsylvania with convenient transit services, potential car pool and vanpool groups, even walking and bicycling opportunities. Even employers can get on board by locating matches just for employees at a specific site(s).

By sharing the ride to work, commuters can save money and reduce the stress of getting to and from work. And you can breathe easy, knowing you are helping to keep the air cleaner, too!

Incentive for New Carpools

Gas prices don't have to get you down. New carpools formed through the Share-A-Ride program can qualify for up to \$100 in Sunoco gas cards. <u>Contact the TMA</u> near your worksite to learn more and sign up!

<u>FAQs</u>

Check our **Frequently Asked Questions** for common questions about Share-A-Ride.

Sign Up Now!

Submit your <u>Share-A-Ride application</u>. You should hear about potential matches within 2 business days.

Existing Platforms: CarpoolWorld

11/30/2018

Community-Based Peer-to-Peer Ridesharing

- Bring Smart City Technology to Suburban / Rural Area
 - As easy-to-use as commercial ridesharing systems
 - Provide features specific for peer-to-peer ridesharing
 - Provide efficient matching

Community-Based Peer-to-Peer Ridesharing

- Bring Smart City Technology to Suburban / Rural Area
 - As easy-to-use as commercial systems
 - Provide features specific for peer-to-peer ridesharing
 - Provide efficient matching
- Design of website / smartphone application
- Design algorithms for matching and beyond
 - Efficiently match riders and drivers given their constraints and preferences
 - Ensure fairness and stability of matching
 - Incentivize participation through rewarding scheme

Outline

Peer-to-Peer Ridesharing Platform

- Model and Notations
- Matching Riders and Drivers to Maximize System Efficiency
- Tradeoff between Efficiency, Fairness, and Stability
- Incentivize Participation through Reward/Payment Scheme
- Deployment Plan

Summary

 (Optional) Pricing and Scheduling in Commercial Ridesharing Platform

Model and Notations

- V: Possible origin and destination locations
 [T] = {1 ... T}: Discrete time horizon
- dist(u, v):Travel time from u to v (following shortest or fastest path)

Model and Notations

- \mathcal{R} : Set of riders
- For each rider $r \in \mathcal{R}$
 - Self-reported
 - Origin o_r , Destination q_r , Time window $W_r = [\tau_r^e, \tau_r^l]$
 - Earliest departure time and latest arrival time acceptable
 - Preferred departure time τ_r^{\star} , Maximum detour time Δ_r
 - Self-reported or estimated
 - Value of trip v_r
 - λ_r : Cost to complete the trip if not matched to any driver
 - C^r_{tt'}: Cost if matched to a driver, picked up at t and dropped off at t'
 Travel cost + Detour cost + Deviation cost
 - □ Assumed to be linearly increasing w.r.t. detour time and deviation time

Model and Notations

- D: Set of drivers
- For each driver $d \in \mathcal{R}$
 - Self-reported
 - Origin o_d , Destination q_d , Time window $W_d = [\tau_d^e, \tau_d^l]$
 - Preferred departure time τ_d^{\star} , Maximum detour time Δ_d
 - Available seats k_d
 - Self-reported or estimated
 - Value of trip v_d
 - $C_{tt'}^d$: Cost if depart at t and arrives at t'
 - □ Travel cost + Detour cost + Deviation cost
 - □ Assumed to be linearly increasing w.r.t. detour time and deviation time

Outline

- Peer-to-Peer Ridesharing Platform
 - Model and Notations
 - Matching Riders and Drivers to Maximize System Efficiency
 - Tradeoff between Efficiency, Fairness, and Stability
 - Incentivize Participation through Reward/Payment Scheme
 - Deployment Plan

Summary

 (Optional) Pricing and Scheduling in Commercial Ridesharing Platform

Optimization Problem

- Simplest optimization objective: Minimize total cost
 - Let c_{dS} denote the minimum total cost of driver d and a subset of riders S when d is matched to S
 - Given a matching π , denote the set of riders picked up by driver d as $S^{\pi}(d)$

$$\min_{\pi \in \Pi} \sum_{d \in \mathcal{D}} c_{dS^{\pi}(d)} + \sum_{r \in \mathcal{R}: r \notin \cup_{d' \in \mathcal{D}} S^{\pi}(d')} \lambda_{r}$$

How to find the matching to minimize total cost while satisfying the constraints of all participants?

Two-Stage Algorithm to Minimize Total Cost

Two-Stage Algorithm

- Stage I: Compute c_{dS} for all feasible d S pairs
 - Find all feasible d S pairs (driver and subset of riders pairs) and for each feasible d - S pair, find the optimal schedule that can lead to the minimum total cost of d and all riders in S.
- Stage 2: Find the best matching
 - Given the computed c_{dS} for all the feasible d S pairs, match each driver with one subset of riders

Stage I: Compute c_{dS} for all feasible d - S pairs

- Use the RTV-graph (Rider-Trip-Vehicle) framework
 [Alonso-Mora et al, 2017] to enumerate feasible d –
 S pairs and compute c_{dS} incrementally
 - ▶ Key idea: d S is feasible only if d S' is feasible, $\forall S' \subset S$ and |S'| = |S| 1

RTV-Framework [Alonso-Mora et al, 2017]

For each driver d

Let S_i denote the set of subsets of riders with size i that are "compatible" with driver d. Initialize S_i as empty sets.

For $i = 1 .. |\mathcal{R}|$

Enumerate possibly feasible subsets of size i given S_{i-1} For each possibly feasible subset S, check feasibility and compute c_{dS} and optimal schedule. Add to S_i if S is indeed feasible.

Stage I: Compute c_{dS} for all feasible d - S pairs

- Check feasibility and compute c_{dS} for a given d S pair
- Novel contribution: Find the best sequence of waypoints through tree search, enhanced by pruning, dynamic programming, and imitation
 - Pruning: Prune the subtree if lower bound of cost in the subtree is higher than best solution found so far
 - At leaf node: Dynamic Programming
 - Further improvement: Get a reasonably good solution by imitating / learning from the best sequence of d S' where $S' \subset S$

Stage I: Compute c_{dS} for all feasible d - S pairs

Stage 2: Find the best matching

- Integer linear programming
 - Similar to [Alonso-Mora et al, 2017]

$$\begin{array}{ll} \min & \sum_{d \in \mathcal{D}} \sum_{S \in \mathcal{S}} c_{dS} x_{dS} + \sum_{r \in \mathcal{R}} \lambda_r y_r \\ s.t. & \sum_{d \in \mathcal{D}} \sum_{S \in \Gamma_r} x_{dS} + y_r = 1, & \forall r \in \mathcal{R} \\ & \sum_{S \in \mathcal{S}} x_{dS} = 1 & \forall d \in \mathcal{D} \\ & x_{dS} = 0 & \forall (d, S) \text{ not feasible} \\ & x_{dS} \in \{0, 1\} & \forall d \in \mathcal{D}, S \in \mathcal{S} \\ & y_r \in \{0, 1\} & \forall r \in \mathcal{R} \end{array}$$

Is Cost Minimization Enough?

- Limitation
 - Does not explicit reason about rationality of the drivers
 - Why do drivers participate even without payment?
 - Help reduce the total cost of the society
 - Feel good by helping others
 - When would the driver be unhappy?
 - He suffers too much additional cost due to deviation and detour, while his "contribution" to the whole system or to the riders is not so significant

Utility Model

- Rider utility
 - $U_r = v_r C_{tt'}^r$ if matched
 - $U_r = v_r \lambda_r$ if not matched
- Driver utility
 - $\flat \ U_d = v_d C_{tt'}^d$
 - Altruistic factor ρ_d
 - > Altruistic utility (perceived utility) $\tilde{U}_d = U_d + \rho_d \sum_{r \in S(d)} U_r$
- Individual rationality: $U_r \ge 0$, $\widetilde{U}_d \ge 0$

Refined Optimization Problem

• Original optimization problem is equivalent to the case with $\rho_d=+\infty$

Refined Optimization Problem

• Algorithms for the revised optimization problem are almost the same, except that in the leave node of tree search (for computing c_{dS}), we need to solve an ILP if the solution provided by the dynamic programming does not ensure IR for the driver

Refined Optimization Problem

$$\begin{split} \min & \sum_{v \in \{o_d, d_d\}} \sum_{t \in T(v)} c_{vt} z_{vt} + \sum_{t \in T(o_d)} \sum_{t' \in T(d_d)} c_{dtt'} g_{dtt'} \\ & + (1 + \rho'_d) \cdot \left(\sum_{v \in \sigma \setminus d} \sum_{t \in T(v)} c_{vt} z_{vt} + \sum_{r \in \mathcal{R}} \sum_{t \in T(o_r)} \sum_{t' \in T(d_r)} c_{rtt'} g_{rtt'} \right) \\ \text{s.t.} & \sum_{t \in T(v)} z_{vt} = 1 & \forall v \in \sigma \\ & g_{rtt'} \leq z_{o_r t} & \forall r \in S \cup \{d\}, t \in T(o_r), t' \in T(d_r) \\ & g_{rtt'} \leq z_{d_r t} & \forall r \in S \cup \{d\}, t \in T(o_r), t' \in T(d_r) \\ & \sum_{t \in T(o_r)} \sum_{t' \in T(d_r)} g_{rtt'} = 1 & \forall r \in S \cup \{d\} \\ & z_{vt} \leq \sum_{q \in [t^+_{\sigma}, \tau'_{last\sigma(v)}]} z_{next_{\sigma}(v)q} & \forall v \in \sigma, t \in T(v) \\ & \underbrace{v_r - \sum_{q \in [t^+_{\sigma}, \tau'_{last\sigma(v)}]} z_{next_{\sigma}(v)q} & \forall v \in \sigma, t \in T(v) \\ & \underbrace{v_r - \sum_{t \in T(o_r)} c_{o_r t} z_{o_r t} - \sum_{t \in T(o_r)} \sum_{t' \in T(d_r)} c_{rtt'} g_{rtt'} \geq v_r - \lambda_r \\ & \int \theta_d \cdot \sum_{r \in S} \left(v_r - \sum_{t \in T(o_r)} c_{o_r t} z_{o_r t} - \sum_{t \in T(o_r)} \sum_{t' \in T(d_r)} c_{rtt'} g_{rtt'} \right) \\ & + v_d - \sum_{t \in T(o_d)} c_{o_d t} z_{o_d t} - \sum_{t \in T(o_d)} \sum_{t' \in T(d_d)} c_{tt'} g_{dtt'} \geq v_d - c_{det}^d \cdot \operatorname{dist}_d \\ & g_{rtt'} = 0 & \forall r \in S \cup \{d\}, \forall t \in T(o_r), \forall t' \in [t + \Delta_r + \operatorname{dist}_r, \tau_r^t] \\ & z_{vt}, g_{rtt'} \in \{0, 1\} \end{aligned}$$

11/30/2018

Þ

Simulation Results - Scalability

- Simulated instance reflecting daily commute in a neighborhood. $k_d = 4$
- Highest runtime when the ratio is 20% (1:4 driver to rider ratio, i.e., when cars can be fully utilized)

Minimize Total Cost subject to IR Constraint on Perceived Utility

Simulation Results - Scalability

- Fix the driver-rider ration to be 25% (1:3)
- The algorithm can scale up to 160 participants (40 drivers 120 riders) within 1 hour

Simulation Results - Scalability

- Simulated instance reflecting non-rush hour commute in a neighborhood: random destination
- $k_d = 4$, driver-rider ration is 25% (1:3)
- Can handle problems with much larger scale

Alternative Objective: Maximize Perceived Social Welfare

 Minimizing total cost is equivalent to maximizing total utility (social welfare)

 Alternative objective: Maximize total altruistic utility (altruistic social welfare)

11/30/2018

Simulation Results – Social Welfare vs Altruistic Social Welfare

- 5 drivers, 20 riders
- Almost the same when ρ_d is low
- Differences can be as high as 16% when ρ_d is high

Outline

Peer-to-Peer Ridesharing Platform

- Model and Notations
- Matching Riders and Drivers to Maximize System Efficiency
- Tradeoff between Efficiency, Fairness, and Stability
- Incentivize Participation through Reward/Payment Scheme
- Deployment Plan

Summary

 (Optional) Pricing and Scheduling in Commercial Ridesharing Platform

- Rider who is slightly "dominated" will never get a ride
- If frequent or repeated ride requests, the slightly dominated rider deserve some probability of getting matched (for regularly repeated requests, may consider rematching every season etc)
- Fairness: Ensure that each participant i is matched with a minimum probability θ_i as long as there is a feasible match. For now, let $\theta_i = \theta$, $\forall i$

Find the optimal randomized matching given c_{dS}

- M^l , $l = 1 \dots \eta$ are feasible matchings
- ▶ $m_i^l \in \{0,1\}$: whether or not participant *i* is matched in M^l
- Challenge: exponential number of feasible matchings

$$\begin{split} \min_{p} & \sum_{\ell \in [\eta]} Cost(M^{\ell})p^{\ell} \\ \text{s.t.} & \sum_{\ell \in [\eta]} p^{\ell} = 1 \\ & \sum_{\ell \in [\eta]} m_{i}^{\ell}p^{\ell} \geq \theta_{i} \\ & p^{\ell} \geq 0 \\ \end{split} \qquad \forall i \in \mathcal{D} \cup \mathcal{R} \\ & \forall \ell \in [\eta] \end{split}$$

Find the optimal randomized matching through constraint generation for the dual

Slave problem: Find the most violated constraint that is not considered yet

$$\max_{l} \sum_{i \in \mathcal{D} \cup \mathcal{R}} m_{i}^{l} w_{i}^{*} + \rho^{*} - Cost(M^{l})$$

Equivalent to solve the original matching problem with edge weight adjusted from c_{dS} to $\bar{c}_{dS} = c_{dS} - \sum_{i \in \{d\} \cup S} w_i^*$ $\min_{\pi \in \Pi} \sum_{d \in D} \bar{c}_{dS^{\pi}(d)} + \sum_{r \in \mathcal{R}: r \notin \cup_{d' \in D} S^{\pi}(d')} \lambda_r$

- Minimum cost increase linearly as θ increases when θ is small
- Can increase fairness without too much degradation in efficiency

Stability in Matching

- No subgroup has incentive to leave the system and operate on their own such that everyone in the subgroup get higher utility
- When subgroup has size I, lead to constraints

$$U_r \ge v_r - \lambda_r$$

$$\blacktriangleright \widetilde{U}_d \ge v_d - C^d_{\tau^*_d, \tau^*_d + \operatorname{dist}(o_d, q_d)}$$

- Stronger than the IR constraint $U_r \ge 0$, $\widetilde{U}_d \ge 0$
- Need additional constraints for subgroups with size larger than I (Ongoing work)
- Adding stability constraint will reduce system efficiency (total cost or social welfare)

Outline

Peer-to-Peer Ridesharing Platform

- Model and Notations
- Matching Riders and Drivers to Maximize System Efficiency
- Tradeoff between Efficiency, Fairness, and Stability
- Incentivize Participation through Reward/Payment Scheme
- Deployment Plan

Pricing and Scheduling in Commercial Ridesharing Platform

Summary

Reward / Payment Scheme (Future Work)

Further incentivize participation

- Approach I: Scoring system to determine θ_i minimum probability of getting matched
- Approach 2: External reward to ensure stability
 E.g., coupons provided by community partners
- Approach 3: Suggest payment from rider to driver

Outline

Peer-to-Peer Ridesharing Platform

- Model and Notations
- Matching Riders and Drivers to Maximize System Efficiency
- Tradeoff between Efficiency, Fairness, and Stability
- Incentivize Participation through Reward/Payment Scheme
- Deployment Plan

Summary

 (Optional) Pricing and Scheduling in Commercial Ridesharing Platform

Plan for Deployment

- In collaboration with
 - Lawrence County
 - Allegheny County Department of Human Service Office of Community Services
 - Hulton Arbors

(Developed by Team Lead by Prof. Jacquillat)
Landing Page of Website

Lawrence County Ride-Sharing Platform

Welcome

You have reached Lawrence County's ride-sharing platform.

Please login to request a ride or post a carpool.

Login

If you don't have an account, click Sign Up.

Sign Up

Home

Contact

Signup

Activity Page (Landing Page after Logging in):

Lawrence County Ride-Sharing Platform	Activity Page	Contact	Logout (nyshac)
Home / Welcome to your account			
Welcome to your account			
What would you like to do today?			
Request a Ride			
Post a Carpool			
View/Update Profile			
View previous requests			
View previous posts			

Request a Ride Page

Request Type	
Based on Departure Time	۳
Date	
Departure Preferred Time	
Departure Earliest Time	
Departure Latest Time	
Arrival Preferred Time	
Arrival Earliest Time	
Arrival Latest Time	
Departure	
Destination	
Save	

Post a Carpool Page

Lawrence County Ride-Sharing Platform	Activity Page	Contact	Logout (nyshac)
Home / Carpool Posts / Create Carpool Post			
Create Carpool Post Post Description			
Date			
Start Time			
Departure			
Destination			
Arrival Time			
Save			

Summary

Peer-to-Peer Ridesharing Platform

- Need to consider the utility model of the participants
- Tradeoff between Efficiency, Fairness, and Stability
- Incentivize participation through reward/payment scheme

Fei Fang Carnegie Mellon University <u>feifang@cmu.edu</u>

A USDOT NATIONAL UNIVERSITY TRANSPORTATION CENTER

1/30/2018

Backup Slides

Outline

Peer-to-Peer Ridesharing Platform

- Model and Notations
- Matching Riders and Drivers to Maximize System Efficiency
- Tradeoff between Efficiency, Fairness, and Stability
- Incentivize Participation through Reward/Payment Scheme
- Deployment Plan

Summary

 (Optional) Pricing and Scheduling in Commercial Ridesharing Platform

Community-Based Peer-to-Peer Ridesharing

	Commercial Ridesharing Platform	Community-Based Peer-to- Peer Ridesharing Platform
Goal	Maximize Revenue	Maximize Social Welfare / Total Cost Saving
Rider-to-Driver Payment	Yes	Not necessary
Drivers' departure and arrival	Almost not allowed	Yes
Rider's Flexibility	Not provided explicitly	Yes
Control over participants	Penalty / Fine	Reward

Commercial Ridesharing Platform

 Ensure efficiency of on-demand ridesharing through scheduling and pricing

Why current mechanism (naïve surge) does not work

 Model: Discrete time/location, Impatient riders, Anonymous origin-destination trip price

One-shot assignment

- Assignment plan: Decompose a min-cost flow
- Pricing: Dual of flow LP
- Form competitive equilibrium (CE)
 - Welfare optimal
 - Maximize total payment for each driver
 - Maximize utility for each rider
 - Envy free
 - > All feasible driver payments in CE form a lattice

- However...Drivers can deviate and trigger recomputation!
- Solution: Driver-Pessimal CE
 - ► Trip price = welfare gain difference $p_{a,b,t} = \Phi_{a,t} - \Phi_{b,t+dist(a,b)}$ $\Phi_{a,t} \triangleq W(D \cup \{(t,T,a)\}, R) - W(D,R)$
 - Incentive compatible subgame perfect equilibrium
 - No driver want to deviate from assigned action!

Assignment and trip price under Spatio-Temporal Pricing

SPT vs Naïve surge

Existing Platforms: CommuteInfo

Ho

Commutainte ang	1-888-819-6110	Commute Cost Calculator	r E-News Signup	Contact Us 🔍 Search
a better way to work	FOR COMMUTERS	FOR EMPLOYERS NEW	VS & EVENTS COMM	IUTE OPTIONS REPORT
	CARPOO	DL		
Iome / For Commuters / Commuting Options / Carpool				
FOR COMMUTERS			ation	ý.
Commuting Options	CARPOOL TRANS	T VANPOOL	BIKING	WALK
Carpool				
Transit				
Vanpool S/	AVINGS AND BENEFIT	S		
Biking				
Walking/Other Options	Saves money			
Emergency Ride Home	Allows for flexibility			
Park-n-Ride Locator	Helps the environment			
PennDOT Traffic Updates	Works well for shorter cor	nmutes		
	Can be arranged for one-	to-seven days per week	c	
Safety Tips	May help save money on a	auto insurance premiun	n	
Driver Safety Training Reimbursement	Qualifies for the HOV lane	s		
Commute Cost Calculator	Eligible for Emergency Rid	de Home		
Benefits of Ridesharing				
SI	HARE THE RIDE			
Cr	azy commute? Cruise in a c	carpool. A carpool is two	o or more people sha	aring a ride to work or

school in one of the participant's own vehicle.

Receive a personalized COMMUTE OPTIONS REPORT

Existing Platforms: CATARIDE

CATABUS LOCATOR

Click here for current status of all service including live estimated bus locations and departures.

Text Only Version

Mobile apps available

RIDER ALERTS

Click here for the latest on service delays, detours and changes.

CATABUS SCHEDULES

COMMUNITY SERVICE

RIDESHARE

Already registered with RideShare? Click here to login.

RIDESHARE is an online, self-registration program that matches individuals from the surrounding communities who share the same commute. You will be asked to provide information to create a match list that is personalized to your schedule. Participants receive this free, custom list instantly. You can then create or join a carpool or vanpool and/or contact a participant with questions. All information is protected and confidential.

A carpool is simply 2-6 people riding together in one vehicle to their destination. Carpooling is flexible and can usually accommodate everyone's needs. It is up to the individuals in the group to determine whether cash will be exchanged or whether members share the driving.

To register online, you will first be asked to supply the following information:

First and Last Name Phone Numbers (work, home, and/or mobile) Gender, Email Username and Password

After you click on the Register button, proceed by clicking on each tab across the top of the next page (Preferences and Profile) to enter information that will create your commute information. **RideShare can not provide a match list for you, nor include your name on any match list, if this information is not completed.** After you have entered the information, click on the tab labeled Matches to find others who have the same commute as you. You can then send confidential emails to ask questions about joining a carpool or vanpool.

Existing Platforms: eRideShare

Save money • Make new friends • Reduce emissions

60

Use this search box to find partners for your trip.

	State or Prov	Days	Contact / Member ID	Comment / Offer or request / Entry date
)	PA	M-F	map CassM	type:request; entrydate:2017-12-06

Sign Up Page

Lawrence County Ride-Sharing Platform	Home	Contact	Signup	Login
Home / Signup				
Sianup				
First Name				
First Name cannot be blank.				
Last Name				
lype of User				
Dotti - Driver & Rider				
Username				
Username cannot be blank.				
Email				
Email cannot be blank.				
Password				
Password cannot be blank.				
Signup				

Login Page

Lawrence County Ride-Sharing Platform	Home	Contact	Signup	Log
Home / Login				
Login				
Please fill out the following fields to login:				
Username				
nyshad				
Password				
Remember Me				
If you forgot your password you can reset it.				
Login				

Contact Us Page

Lawrence County Ride-Sharing Platform	Home	Contact	Signup	Login
Home / Contact				
Contact				
If you have any questions, please fill out the following form to contact us. Thank you.				
Name				
Name cannot be blank.				
Email				
Subject				
Body				
Body				
Verification Code				
Pisnre				
Submit				

View Previous Requests Page

La	wrence County Ride	-Sharing Platform			Activity Page	Contact	Logout (nyshac)
H	lome / Ride Requests						
R	equest a ride	ests					
#	Date	Departure Preferred Time	Arrival Preferred Time	Departure	Destination		
1	2018-03-01	12:00:00.000000	01:00:00.000000	6536, Wilkins Avenue	UPMC Hosp	ital	• 1

View Previous Posts Page

Lui	wrence County Rid	e-Sharing Platform				Activity Page	Contact	Logout (nysha
Н	Home / Carpool Posts							
С	arpool Po	osts						
Po	ost a Carpool							
Sho	owing 1-2 of 2 items.							
	3							
#	Post Description	Date	Start Time	Departure	Destination	Arrival	Time	
#	Post Description	Date	Start Time	Departure	Destination	Arrival	Time	
#	Post Description first post	Date 0000-00-00	Start Time 07:00:00.000000	Departure home	Destination upmc	Arrival	Time	• × 1