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Smart City
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Revolution in Mobility
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Mobility Challenge in Non-City Area

 Mobility Challenge in Suburban / Rural Area

 Lack of public transportation

 Lack access to essential needs if no private vehicle

 Commercial ridesharing platform cannot provide 

reliable service

 Long waiting time

 High cancellation rate

 Expensive for daily commute
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Community-Based Peer-to-Peer Ridesharing

 Community-Based Peer-to-Peer Ridesharing
 Non-commercial platform

 Identify carpooling opportunities

 Community building

 Existing platforms are not satisfactory
 High overhead / Not flexible / Hard-to-use

 No up-to-date information / No immediate response

 No community-specific service

 Do not leverage latest advances in technology

 Privacy / Security concerns
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Existing Platforms: Share-A-Ride
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Existing Platforms: CarpoolWorld
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Community-Based Peer-to-Peer Ridesharing

 Bring Smart City Technology to Suburban / Rural Area

 As easy-to-use as commercial ridesharing systems

 Provide features specific for peer-to-peer ridesharing

 Provide efficient matching
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Community-Based Peer-to-Peer Ridesharing

 Bring Smart City Technology to Suburban / Rural Area
 As easy-to-use as commercial systems

 Provide features specific for peer-to-peer ridesharing

 Provide efficient matching

 Design of website / smartphone application

 Design algorithms for matching and beyond
 Efficiently match riders and drivers given their constraints 

and preferences

 Ensure fairness and stability of matching

 Incentivize participation through rewarding scheme
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Outline

 Peer-to-Peer Ridesharing Platform
 Model and Notations

 Matching Riders and Drivers to Maximize System Efficiency

 Tradeoff between Efficiency, Fairness, and Stability

 Incentivize Participation through Reward/Payment Scheme

 Deployment Plan

 Summary

 (Optional) Pricing and Scheduling in Commercial 
Ridesharing Platform
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Model and Notations

 𝑉: Possible origin and destination locations

 𝑇 = 1…𝑇 : Discrete time horizon

 dist(𝑢, 𝑣): Travel time from 𝑢 to 𝑣 (following shortest 

or fastest path)
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Model and Notations

 ℛ: Set of riders

 For each rider 𝑟 ∈ ℛ
 Self-reported

 Origin 𝑜𝑟, Destination 𝑞𝑟, Time window 𝑊𝑟 = [𝜏𝑟
𝑒, 𝜏𝑟

𝑙 ]

 Earliest departure time and latest arrival time acceptable

 Preferred departure time 𝜏𝑟
⋆, Maximum detour time Δ𝑟

 Self-reported or estimated

 Value of trip 𝑣𝑟
 𝜆𝑟 : Cost to complete the trip if not matched to any driver

 𝐶𝑡𝑡′
𝑟 : Cost if matched to a driver, picked up at 𝑡 and dropped off at 𝑡′

 Travel cost + Detour cost + Deviation cost

 Assumed to be linearly increasing w.r.t. detour time and deviation time
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Model and Notations

 𝒟: Set of drivers

 For each driver 𝑑 ∈ ℛ
 Self-reported

 Origin 𝑜𝑑, Destination 𝑞𝑑, Time window 𝑊𝑑 = [𝜏𝑑
𝑒 , 𝜏𝑑

𝑙 ]

 Preferred departure time 𝜏𝑑
⋆ , Maximum detour time Δ𝑑

 Available seats 𝑘𝑑

 Self-reported or estimated

 Value of trip 𝑣𝑑

 𝐶𝑡𝑡′
𝑑 : Cost if depart at 𝑡 and arrives at 𝑡′

 Travel cost + Detour cost + Deviation cost

 Assumed to be linearly increasing w.r.t. detour time and deviation time
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Optimization Problem

 Simplest optimization objective: Minimize total cost

 Let 𝑐𝑑𝑆 denote the minimum total cost of driver 𝑑 and a 

subset of riders 𝑆 when 𝑑 is matched to 𝑆

 Given a matching 𝜋, denote the set of riders picked up by 

driver 𝑑 as 𝑆𝜋(𝑑)

 How to find the matching to minimize total cost 

while satisfying the constraints of all participants?
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min
𝜋∈Π

 

𝑑∈𝒟

𝑐𝑑𝑆𝜋(𝑑) +  

𝑟∈ℛ:𝑟∉∪𝑑′∈𝒟𝑆
𝜋(𝑑′)

𝜆𝑟



Two-Stage Algorithm to Minimize Total Cost

 Two-Stage Algorithm

 Stage 1: Compute 𝑐𝑑𝑆 for all feasible 𝑑 − 𝑆 pairs

 Find all feasible 𝑑 − 𝑆 pairs (driver and subset of riders pairs) and for 

each feasible 𝑑 − 𝑆 pair, find the optimal schedule that can lead to the 

minimum total cost of 𝑑 and all riders in 𝑆. 

 Stage 2: Find the best matching

 Given the computed 𝑐𝑑𝑆 for all the feasible 𝑑 − 𝑆 pairs, match each 

driver with one subset of riders
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Stage 1: Compute 𝑐𝑑𝑆 for all feasible 𝑑 − 𝑆 pairs

 Use the RTV-graph (Rider-Trip-Vehicle) framework 

[Alonso-Mora et al, 2017] to enumerate feasible 𝑑 −
𝑆 pairs and compute 𝑐𝑑𝑆 incrementally

 Key idea: 𝑑 − 𝑆 is feasible only if 𝑑 − 𝑆′ is feasible, ∀𝑆′ ⊂ 𝑆
and 𝑆′ = 𝑆 − 1
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RTV-Framework [Alonso-Mora et al, 2017]

For each driver 𝑑
Let 𝒮𝑖 denote the set of subsets of riders with size 𝑖 that are 

“compatible” with driver 𝑑. Initialize 𝒮𝑖 as empty sets. 

For 𝑖 = 1. . |ℛ|
Enumerate possibly feasible subsets of size 𝑖 given 𝒮𝑖−1
For each possibly feasible subset 𝑆, check feasibility and compute 

𝑐𝑑𝑆 and optimal schedule. Add to 𝒮𝑖 if 𝑆 is indeed feasible.



Stage 1: Compute 𝑐𝑑𝑆 for all feasible 𝑑 − 𝑆 pairs

 Check feasibility and compute 𝑐𝑑𝑆 for a given 𝑑 − 𝑆
pair

 Novel contribution: Find the best sequence of 

waypoints through tree search, enhanced by pruning, 

dynamic programming, and imitation

 Pruning: Prune the subtree if lower bound of cost in the 

subtree is higher than best solution found so far

 At leaf node: Dynamic Programming

 Further improvement: Get a reasonably good solution by 

imitating / learning from the best sequence of 𝑑 − 𝑆′ where 

𝑆′ ⊂ 𝑆
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Stage 1: Compute 𝑐𝑑𝑆 for all feasible 𝑑 − 𝑆 pairs

 Example: 𝑑, 𝑟1, 𝑟2, 𝑟3
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𝑂𝑑

𝑂𝑟1 𝑂𝑟2 𝑂𝑟3

𝑑𝑟1 𝑂𝑟2 𝑂𝑟3



Stage 2: Find the best matching

 Integer linear programming

 Similar to [Alonso-Mora et al, 2017]
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Is Cost Minimization Enough?

 Limitation

 Does not explicit reason about rationality of the drivers

 Why do drivers participate even without payment?

 Help reduce the total cost of the society

 Feel good by helping others

 When would the driver be unhappy?

 He suffers too much additional cost due to deviation and detour, 

while his “contribution” to the whole system or to the riders is not 

so significant
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Utility Model

 Rider utility 

 𝑈𝑟 = 𝑣𝑟 − 𝐶𝑡𝑡′
𝑟 if matched

 𝑈𝑟 = 𝑣𝑟 − 𝜆𝑟 if not matched

 Driver utility

 𝑈𝑑 = 𝑣𝑑 − 𝐶𝑡𝑡′
𝑑

 Altruistic factor 𝜌𝑑
 Altruistic utility (perceived utility)  𝑈𝑑 = 𝑈𝑑 + 𝜌𝑑  𝑟∈𝑆(𝑑)𝑈𝑟

 Individual rationality: 𝑈𝑟 ≥ 0,  𝑈𝑑 ≥ 0
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Refined Optimization Problem

 Original optimization problem is equivalent to the 

case with 𝜌𝑑 = +∞
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min
𝜋∈Π

 

𝑑∈𝒟

𝑐𝑑𝑆𝜋(𝑑) +  

𝑟∈ℛ:𝑟∉∪𝑑′∈𝒟𝑆
𝜋(𝑑′)

𝜆𝑟

s.t. 𝑈𝑟 ≥ 0
 𝑈𝑑 ≥ 0

Other existing constraints



Refined Optimization Problem

 Algorithms for the revised optimization problem are 

almost the same, except that in the leave node of tree 

search (for computing 𝑐𝑑𝑆), we need to solve an ILP if 

the solution provided by the dynamic programming 

does not ensure IR for the driver
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Refined Optimization Problem
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𝑈𝑟 ≥ 0

 𝑈𝑑 ≥ 0



Simulation Results - Scalability

 Simulated instance reflecting daily commute in a 

neighborhood. 𝑘𝑑 = 4

 Highest runtime when the ratio is 20% (1:4 driver to 

rider ratio, i.e., when cars can be fully utilized)
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Simulation Results - Scalability

 Fix the driver-rider ration to be 25% (1:3)

 The algorithm can scale up to 160 participants (40 

drivers 120 riders) within 1 hour
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Simulation Results - Scalability

 Simulated instance reflecting non-rush hour commute 

in a neighborhood: random destination

 𝑘𝑑 = 4, driver-rider ration is 25% (1:3)

 Can handle problems with much larger scale

11/30/201831

0

20

40

60

80

100

120

140

160

4

2
0

3
6

5
2

6
8

8
4

1
0
0

1
1
6

1
3
2

1
4
8

1
6
4

1
8
0

1
9
6

2
1
2

2
2
8

2
4
4

2
6
0

2
7
6

R
u
n
ti
m

e
 (

se
c)

Number of Agents



Alternative Objective: Maximize Perceived Social Welfare

 Minimizing total cost is equivalent to maximizing total 

utility (social welfare)

 Alternative objective: Maximize total altruistic utility 

(altruistic social welfare) 
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min
𝜋∈Π

 

𝑑∈𝒟

𝑐𝑑𝑆𝜋(𝑑) +  

𝑟∈ℛ:𝑟∉∪𝑑′∈𝒟𝑆
𝜋(𝑑′)

𝜆𝑟 min
𝜋∈Π

 

𝑑∈𝒟

𝑈𝑑 + 

𝑟∈ℛ

𝑈𝑟

min
𝜋∈Π

 

𝑑∈𝒟

 𝑈𝑑 + 

𝑟∈ℛ

𝑈𝑟
Similar algorithms can 

be applied



Simulation Results – Social Welfare vs Altruistic Social Welfare

 5 drivers, 20 riders

 Almost the same when 𝜌𝑑 is low

 Differences can be as high as 16% when 𝜌𝑑 is high
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Fairness in Matching

 Rider who is slightly “dominated” will never get a ride

 If frequent or repeated ride requests, the slightly 

dominated rider deserve some probability of getting 

matched (for regularly repeated requests, may 

consider rematching every season etc)

 Fairness: Ensure that each participant 𝑖 is matched 

with a minimum probability 𝜃𝑖 as long as there is a 

feasible match. For now, let 𝜃𝑖 = 𝜃, ∀𝑖
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Fairness in Matching

 Find the optimal randomized matching given 𝑐𝑑𝑆
 𝑀𝑙, 𝑙 = 1…𝜂 are feasible matchings

 𝑚𝑖
𝑙 ∈ {0,1}: whether or not participant 𝑖 is matched in 𝑀𝑙

 Challenge: exponential number of feasible matchings
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Fairness in Matching

 Find the optimal randomized matching through 

constraint generation for the dual
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Slave problem: Find the most violated constraint that is not considered yet

max
𝑙

 

𝑖∈𝒟∪ℛ

𝑚𝑖
𝑙𝑤𝑖

∗ + 𝜌∗ − 𝐶𝑜𝑠𝑡(𝑀𝑙)

Equivalent to solve the original matching problem with edge weight adjusted 

from 𝑐𝑑𝑆 to  𝑐𝑑𝑆 = 𝑐𝑑𝑆 −  𝑖∈ 𝑑 ∪𝑆𝑤𝑖
∗

min
𝜋∈Π

 

𝑑∈𝒟

 𝑐𝑑𝑆𝜋(𝑑) +  

𝑟∈ℛ:𝑟∉∪𝑑′∈𝒟𝑆
𝜋(𝑑′)

𝜆𝑟



Fairness in Matching

 Minimum cost increase linearly as 𝜃 increases when 𝜃
is small

 Can increase fairness without too much degradation 

in efficiency
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Stability in Matching

 No subgroup has incentive to leave the system and 
operate on their own such that everyone in the 
subgroup get higher utility

 When subgroup has size 1, lead to constraints

 𝑈𝑟 ≥ 𝑣𝑟 − 𝜆𝑟

  𝑈𝑑 ≥ 𝑣𝑑 − 𝐶𝜏𝑑
⋆ ,𝜏𝑑

⋆+dist(𝑜𝑑,𝑞𝑑)
𝑑

 Stronger than the IR constraint 𝑈𝑟 ≥ 0,  𝑈𝑑 ≥ 0

 Need additional constraints for subgroups with size 
larger than 1 (Ongoing work)

 Adding stability constraint will reduce system 
efficiency (total cost or social welfare)
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Reward / Payment Scheme (Future Work)

 Further incentivize participation

 Approach 1: Scoring system to determine 𝜃𝑖 -

minimum probability of getting matched

 Approach 2: External reward to ensure stability

 E.g., coupons provided by community partners

 Approach 3: Suggest payment from rider to driver
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Plan for Deployment

 In collaboration with 

 Lawrence County

 Allegheny County Department of Human Service Office of 

Community Services

 Hulton Arbors
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Lawrence County Peer-to-Peer Ride-Sharing Platform

 (Developed by Team Lead by Prof. Jacquillat)

 Landing Page of Website
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Lawrence County Peer-to-Peer Ride-Sharing Platform

 Activity Page (Landing Page after Logging in):
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Lawrence County Peer-to-Peer Ride-Sharing Platform

 Request a Ride Page
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Lawrence County Peer-to-Peer Ride-Sharing Platform

 Post a Carpool Page
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Summary

 Peer-to-Peer Ridesharing Platform

 Need to consider the utility model of the participants

 Tradeoff between Efficiency, Fairness, and Stability

 Incentivize participation through reward/payment scheme
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Community-Based Peer-to-Peer Ridesharing
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Commercial 

Ridesharing Platform

Community-Based Peer-to-

Peer Ridesharing Platform

Goal Maximize Revenue Maximize Social Welfare / Total Cost 

Saving

Rider-to-Driver

Payment

Yes Not necessary

Drivers’ departure 

and arrival

Almost not allowed Yes

Rider’s Flexibility Not provided explicitly Yes

Control over 

participants

Penalty / Fine Reward



Commercial Ridesharing Platform

 Ensure efficiency of on-demand ridesharing through 

scheduling and pricing
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Scheduling

Mechanism Design

Pricing



Spatial-Temporal Pricing

 Why current mechanism (naïve surge) does not work
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Spatial-Temporal Pricing

 Model: Discrete time/location, Impatient riders, 
Anonymous origin-destination trip price

 One-shot assignment
 Assignment plan: Decompose a min-cost flow

 Pricing: Dual of flow LP

 Form competitive equilibrium (CE)
 Welfare optimal

 Maximize total payment for each driver

 Maximize utility for each rider

 Envy free

 All feasible driver payments in CE form a lattice
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Spatial-Temporal Pricing

 However…Drivers can deviate and trigger 

recomputation!

 Solution: Driver-Pessimal CE

 Trip price = welfare gain difference

𝑝𝑎,𝑏,𝑡 = Φ𝑎,𝑡 −Φ𝑏,𝑡+𝑑𝑖𝑠𝑡 𝑎,𝑏

Φ𝑎,𝑡 ≜ 𝑊 𝐷 ∪ 𝑡, 𝑇, 𝑎 , 𝑅 −𝑊(𝐷, 𝑅)

 Incentive compatible subgame perfect equilibrium

 No driver want to deviate from assigned action!
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Spatial-Temporal Pricing

 Assignment and trip price under Spatio-Temporal 

Pricing
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Spatial-Temporal Pricing

 SPT vs Naïve surge
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Existing Platforms: CommuteInfo
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Existing Platforms: CATARIDE
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Existing Platforms: eRideShare
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Lawrence County Peer-to-Peer Ride-Sharing Platform

 Sign Up Page

11/30/201861



Lawrence County Peer-to-Peer Ride-Sharing Platform

 Login Page

11/30/201862



Lawrence County Peer-to-Peer Ride-Sharing Platform

 Contact Us Page
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Lawrence County Peer-to-Peer Ride-Sharing Platform

 View Previous Requests Page
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Lawrence County Peer-to-Peer Ride-Sharing Platform

 View Previous Posts Page
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