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Problem 

The goal of this project was to detect road boundaries and stationary obstacles on the 

road using low-cost automotive-grade LiDAR scanners for the purpose of lateral positioning of 

the vehicle along the road. For autonomous driving, this information is especially useful on roads 

without proper lane markings or regions with poor GPS reception, such as tunnels, dense urban 

environment or under a heavy tree canopy. For manual driving, it can similarly be used as input 

to lane-centering assist systems. 

Approach/Methodology 

For the purpose of road boundary detection, we use the 6 IBEO LiDAR scanners installed 

in the GM-CMU Autonomous Driving Lab’s Cadillac SRX vehicle, which give 360-degree 

coverage around the car [1]. Figure 1 shows the location of the LiDAR scanners and radar in the 

car, and Figure 2 shows the shows the range and field of view of these scanners along with their 

blind spots.  

      

  

  

 

Using these data, we try to model the road boundaries in the form of a clothoid [2], which 

defines a function of road curvature given road (longitudinal) length as κ�l� � c� �	c
l �

	� κ�ς�dς
�

�
, where c0 is the initial curvature and c1 is the curvature derivative. They are 

numerically represented as their 3rd-order Taylor series expansion given by  

Figure 1: Sensor installation 
Figure 2: Perception system coverage with all 

sensors integrated. a) Maximum ranges b) Sensor 
Field-of-View (FoV) and coverage close to the car 



5 

 

�	 � 	
1

6
�
�

3	 �	
1

2
���

2	 � 	��	 � �������	 

where �������is the lateral offset between the boundary and center of the vehicle, β is the heading 

angle with respect to the vehicle’s driving direction, c0 is the curvature, and c1 is the curvature 

rate. Here, x is in the vehicle’s lateral direction and y is the vehicle’s longitudinal direction. The 

road is assumed to be curved in x as a cubic function of y.  

Prior work on road edge detection using LiDAR, and LiDAR in combination with vision, 

used downward-looking scanners with scan planes making a large angle with the road [3, 4]. 

These scans are then integrated over time to create a 3-D rolling window to derive the road 

boundary. In our system, the scanning planes are almost parallel to the ground and each LiDAR 

scanner has 4 scanning planes per sensor with a total of 3.2-degrees vertical field-of-view. 

Because of this, we are able to scan a long section of the road-boundary with a single LiDAR 

scan, as shown in Figure 3, and obtain its shape. These road boundaries can then be tracked over 

time to account for inaccuracies in the LiDAR sensing and car’s odometer, and obtain a robust 

road boundary even if we are not able to obtain the correct boundary in every frame. 

A limitation of our sensing capability is that we are unable to detect curbs that are lower 

than ~8 inches in height, as we do not get the adequate number of points required for a good 

detection. Most of the high curbs, guardrails, Jersey barriers and tunnel walls are detected well. 

Figure 4 shows the steps taken to obtain the road boundaries from each frame and track 

them over time. To obtain the road boundaries from each LiDAR frame, we first preprocess the 

IBEO data to obtain a database of all points which could potentially be associated with the road-
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boundary. This can be done based on its position relative to the car, the sensor from which the 

reading is coming, and the IBEO’s internal filtering.  

           

Figure 3. Raw IBEO scan at a single time with visible road boundary (a) inside a tunnel (b) on a highway 

Figure 4 shows the steps taken to obtain the road boundaries from each frame and track 

them over time. To obtain the road boundaries from each LiDAR frame, we first preprocess the 

IBEO data to obtain a database of all points which could potentially be associated with the road-

boundary. This can be done based on its position relative to the car, the sensor from which the 

reading is coming, and the IBEO’s internal filtering.  

With the set of preprocessed points, we want to group points into different clusters such 

that all the points representing a particular boundary are grouped into a single cluster. To do so, 

we find the direction of maximum variance for the data set using Principal Component Analysis 

(PCA). This direction of maximum variance is assumed to correspond to the direction of the 

road. The points are then compressed along the PCA direction and a k-means clustering is 
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applied to it where the number of clusters k = α√�, n being the total number of points and α 

being a suitable constant. Figure 4(a) shows a set of clustered preprocessed points. Following 

that, we find a cubic polynomial for each cluster using a RANSAC search. Using RANSAC over 

a curve-fitting technique ensures that the curve fits a section of the points very precisely while 

ignoring the outliers. Data points from all the clusters that fail to give a good cubic fit and the 

outliers from other clusters are removed from the dataset, giving us a filtered set of points that 

may correspond to a road boundary.  

 

Figure 4. (a) Raw IBEO scan grouped into different clusters, shown by different colors. (b) Line fits generated using 
RANSAC for each cluster shown in red. Out of them, 3 lie on left of the road, 4 on the right of the road and 1 inside 
the road. (c) Final cubic road boundaries after UKF shown in blue and red which take into account the boundaries 

over previous time intervals and are more robust to sudden changes. The green and black lines are the cubic current-
time-instant cubic fits. 

On this set of filtered points, we again apply the PCA compression and k-means 

clustering, and we rotate the points with the road’s direction as y and fit lines to each new cluster, 

as shown in Figure 4(b). This is done in order to identify the clusters that give us the most 

probable road boundary, as in many cases we get several good curve fits on both sides of the 

road. Out of this set of new lines, we rate the probability of their corresponding to the actual road 
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boundary based on their distance to the car’s center, their slopes, the range and density of points 

in the cluster, the number of points representing the curve, etc. and we find the lines on both 

sides of the car with the highest probabilities. The clusters to which those fits belong are kept 

while the others are removed from the dataset of LiDAR points. We then transform these points 

to an ego-car perspective and find the best cubic fits for both sides of the roads using RANSAC 

and determine their probability of representing the actual road boundary. If high, we designate 

those curves as the road boundaries for that time. 

In order to track the left and right boundaries of the road over time, we use an unscented 

Kalman Filter (UKF). The UKF uses an unscented transformation to model nonlinear dynamics 

[5], which often works better than an Extended Kalman filter, which uses a linearization 

technique to approximate non-linear dynamics using the Jacobian. Here, the state is the road 

boundary expressed as x = [�������,	�, c0, c1]
  

and the current road boundary, expressed as a set 

of points {��
 , ��

 , ��
" , ��

"}�$
:& is taken as the observation. Figure 4(c) shows the road boundary 

after implementing the UKF tracking.  

For the purpose of detecting static obstacles on the road, such as parked cars, trailers, etc., 

we pick out all the points that lie inside the current road boundaries in the original dataset of 

LiDAR scans. Out of these points, we find clusters of points with a high density and find line-fits 

perpendicular to the road boundaries. These clusters and lines are then tracked over time to 

determine their velocities relative to the car. The obstacles that appear to be stationary are then 

included in the static road map. 
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Findings  

In this work, our goal was to reliably detect road boundaries on highways and tunnels 

using relatively inexpensive automotive-grade LiDAR sensors compared to high-cost, high-

capability sensors such as the $70,000 Velodyne spinning laser sensor used in order to get a 

high-density 3D range point cloud. Such a sensor is not practical for production automobiles 

from a cost or appearance/integration standpoint.  

         

           

Figure 5. Final road boundaries shown in blue and red with green and black lines being the cubic fits for that time 
instant for (a) tunnel and (c) highway with guardrails, and the corresponding visual data shown in (b) and (d). 

(a) 
(b) 

(c) 
(d) 
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Figure 5 (a) shows an example of a road boundary detected inside a tunnel (b). Due to the 

lack of noise from inside the tunnel and good data points from the high curb, we are able to get 

accurate road boundaries. Figure 5 (c) shows an example of a road boundary detected on a 

highway with guardrails (d). Due to the lack of a good boundary on the right, we are not able to 

identify it accurately.  

More generally, for regions where the road boundary is high and not very far apart from 

the car (<10 meters on either side) such as inside a tunnel or on a highway with high Jersey 

barriers, the road boundary is accurately detected at every time step and smoothly tracked over 

time. In regions with no boundary clearly observable by a LiDAR, such as a short guardrail or a 

curb, the boundaries are only detected approximately 65% of the time and even with the UKF, 

they cannot be tracked well at most times. 

Conclusions/Recommendations 

This project lays the groundwork for the detection of road boundaries along highways 

and tunnels using relatively inexpensive automotive-grade LiDAR. This is very useful for the 

purpose of lateral positioning of the vehicle along the road, especially on roads without proper 

lane markings or regions with poor GPS reception. We are expanding this into detecting and 

mapping stationary obstacle on the road including parked cars and build a static map of the road.  

Future work should include:  

• Refining the road-boundary detection and using adaptive algorithms that deal with 

varying scenarios 

• Understanding the various failure scenarios and modifying our approach to handle 

them better 
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• Use radar along with LiDAR to track vehicles along the road and differentiate 

parked cars from stationary cars 

• Build a static road map by combining the road-boundary and stationary obstacle 

inside the road. 
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