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Abstract

Conventional computer graphics pipelines require detailed 3D models, meshes,
textures, and rendering engines to generate 2D images from 3D scenes. These
processes are labor-intensive. We introduce Hybrid Neural Computer Graphics
(HNCQG) as an alternative. The contribution is a novel image formation strategy
to reduce the 3D model and texture complexity of computer graphics pipelines.
Our main idea is straightforward: Given a 3D scene, render only important objects
of interest and use generative adversarial processes for synthesizing the rest of
the image. To this end, we propose a novel image formation strategy to form
2D semantic images from 3D scenery consisting of simple object models without
textures. These semantic images are then converted into photo-realistic RGB
images with a state-of-the-art conditional Generative Adversarial Network (cGAN)
based image synthesizer trained on real-world data. Meanwhile, objects of interest
are rendered using a physics-based graphics engine. This is necessary as we
want to have full control over the appearance of objects of interest. Finally, the
partially-rendered and cGAN synthesized images are blended with a blending
GAN. We show that the proposed framework outperforms conventional rendering
with ablation and comparison studies. Semantic retention and Fréchet Inception
Distance (FID) measurements were used as the main performance metrics.

1 Introduction

The visual fidelity of a conventional computer graphics pipeline depends on the quality of its models,
textures, and rendering engine. High-quality 3D models and textures require artisanship, whereas
the rendering engine must run complicated physical calculations for the realistic representation of
lighting and shading [1]]. These processes are labor-intensive. Here we investigate alternatives for
alleviating the aforementioned costs.

The alternative to rendering is neural network based generative adversarial image synthesis. The
advent of Generative Adversarial Networks (GAN) [2]] enabled realization of photo-realistic image
synthesis [319]]. A particular sub-problem, conditional image synthesis [[L0-14], delves into the more
specific task of mapping a pixel-wise semantic layout to a complying photo-realistic image. The
conditional semantic layout is the key link between the 3D scene and the generative synthesizer in
our framework. More recently, video-to-video synthesis [15] was proposed as an alternative to image
synthesis. The temporal dimension was added to the generative process to reduce inconsistencies
between synthesized frames.

In this paper, we propose to integrate generative adversarial image synthesis into computer graphics.
For each time step, a physics engine determines the semantic layout of the scene with simple 3D
models that are radiant with a unique class color without texture. Then, a 2D semantic image is formed
with a virtual pinhole camera. This image is the equivalent of a pixel-wise semantic segmentation
mask. Next, the GAN-based image synthesizer converts the 2D semantic image to a photo-realistic
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*all objects are opaque and radiant with unique class color in the 3D semantic layout scene. No ambient occlusion is
considered. Then, a pinhole camera can easily convert the 3D scene into a corresponding upside-down semantic image.

Figure 1: Overview of HNCG. We introduce a novel neural information processing system to form
2D image representations of virtual 3D scenes. Most of the scene is generated with very simple 3D
models without texture except for a few partially rendered objects of interest. We blend the cGAN
synthesized image with a physics-based partial render for increasing visual fidelity and have full
control over the appearance of objects of interest.

image. Conditional GAN (cGAN) [[16] and CYcle GAN (Cy-GAN) [10]] are the main enablers for this
step. Simultaneously, a few objects of interest are partially rendered using a conventional pipe. The
final frame is a mixture of the generated image with the partial renders. Overview of our approach is
shown in Figure T]

Main contributions:

e The formal introduction of the Hybrid Neural Computer Graphics (HNCG) pipeline

e A novel image formation strategy: Blending generative adversarial image synthesis with
physics-based partial rendering

e Reducing the need for texturing and 3D model making artistry in computer graphics pipelines

2 Related work

Rendering. Physics-based rendering [[1]] has been used at the end of conventional computer graphics
pipelines to form 2D imagery from virtual 3D scenes for a long time. The most common approaches,
rasterization and ray-tracing, require a full pipeline of detailed 3D models, their surface textures and
materials, and a physics engine such as Unreal Engine 4 [17] to run complicated calculations for
representing light and shading. Here, we propose to partially replace this pipe with much simpler 3D
models and remove the need for light, texture, and material information for most of the objects in the
scene. We also show that visual fidelity can be increased with the proposed method.

Neural rendering. Recent work demonstrated that 2D image formation could be achieved given
a camera pose and light position in a 3D scene using differentiable convolutional networks [18]].
The key enabler here is the formulation of the discrete rasterization problem as a differentiable
process [19]. With a differentiable rendering framework, a neural network can be trained with
backpropagation. There is more work [20-22] focusing on the different aspects of differentiable
rendering formulation and approximations. Neural rendering is an interesting take on an old problem.
However, this approach still requires detailed 3D models and is incapable of generating texture
information, which reduces the visual fidelity of the output. Here, we propose using generative



adversarial processes and a partial rendering strategy to reduce the complexity of 3D models and
textures significantly.

Generative adversarial image synthesis. The main difference between generative adversarial
image synthesis and neural rendering is the lack of physics. Physical phenomena such as lighting
and reflectivity are completely ignored by GAN based neural image synthesizers [3-9]. Instead, the
photo-realism is achieved by training the GAN with real-world data. In other words, the network
learns to generate photo-realistic images holistically and in an end-to-end fashion. This approach has
one major drawback: there is no constraint on the semantic layout of the generated 2D image. Hence,
no association with 3D scenery can be constructed. As such, this methodology cannot be applied for
our image formation purposes.

Conditional generative adversarial image synthesis. On the other hand, conditional GANSs [10-
13} [15} [14] have been effectively used for image synthesis while retaining a semantic constraint.
Typically, this constraint is a pixel-wise semantic segmentation mask, but other modalities such as
text [23] have also been used. One limiting factor for cGANSs is the paired data requirement. The
dataset must contain semantic segmentation masks and the corresponding real-world images together.
Building such annotated and paired datasets are labor-intensive.

Cycle-consistency and domain adaptation. Cycle consistent GANs and unsupervised domain adap-
tation techniques remove the paired dataset requirement [24-29, 26]. These works have illustrated
that high fidelity image-to-image translation and style transfer can be realized with unpaired data
also. Style transfer is very promising and has a huge application range. For example, CyCADA [25]]
can translate a game engine generated image into a corresponding photo-realistic image. However,
the fully-rendered game engine generated image must still exist for CyCADA to translate it into the
photo-realism domain.

As far as we know, the aforementioned GAN-based image synthesis techniques have not been
integrated into computer graphics pipelines until now. Our contribution is novel in this regard. We
propose to use simple 3D models radiant with unique class color-codes without textures to form
a 2D semantic image first. This image is analogous to a 2D semantic segmentation mask. Then,
state-of-the-art GAN-based image synthesizers trained on real-world datasets can be used to generate
RGB imagery. We tried both cGAN and Cy-GAN variants. Additionally, we render certain important
objects of interest, such as cars in an urban scene, with Unreal Engine 4. The blended image is much
more realistic and retains the semantic layout of the scene better.

3 Method

3.1 Problem formulation

We define a virtual 3D scene S with a 6-tuple (O1, O2, Py, Po, T5,x). Where O1 = (01,02, -+ ,0,)
is a list of object pose vectors, 0 € R®, and P, = (My, Ms,--- , M,,) is the list of corresponding
simple object meshes. We assume P is radiant with unique class color-codes. Oy is a sublist of O
for certain objects of interest, and it has a corresponding list of more complicated object meshes Ps.
P, is not radiant. T is a list of texture maps that corresponds to P,. x € RS is the pose vector of a
virtual camera. It should be noted that a corresponding 77 to O; does not exist.

We follow the formal definition of a triangular mesh given in [30]. M := (V, Q) is a triangular

mesh defined with faces @ C {1,-- -, \V\}?’ and vertices V C R®. Where ¢ = (q1,¢2,q3) € Qisa
triangular face with corresponding vertices vg, , vq,, and vy,. E(Q), edges between the vertices are
defined by faces implicitly.

Problem 1. Given S, we are interested in finding a mapping function U : x — R¥XW X3 that will
convert the camera pose vector X to a photo-realistic RGB image with height [/ and width V.

The overview of our solution is shown in Figure[I] and the formal description starts below.

3.2 Semantic Image formation

A semantic image formation function / can be obtained with O;, P; and a pinhole camera model.
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Figure 2: Key enablers. GG and F' are the generators. cGAN can give more realistic results at the cost
of a paired dataset. Whereas Cy-GAN completely removes the paired dataset requirement. Details
can be found in Appendix [A]

h : x — MH"*W maps x to an integer subspace (Ml C Z) using the pinhole camera model [31]] given
below, where m € M7 *W is a pixel-wise semantic image whose entries correspond to the semantic

classes of the scene.
mq — _i D1 (1)
ma2 p3 \P2

Where (p1,p2,p3) is the 3D coordinates of point p in R®. (mq,msz) is the corresponding pixel
coordinates in m. d is the distance between the focal point and image formation plane. m is an
upside-down image as shown in Figure[I] m is rotated 180° for the next step. For simplicity, we use
the same notation m for the rotated image in the remainder of the paper.

Then, the problem narrows down to finding f : m — R*WX3_This is the exact same goal of the
well-studied [[LOH13]] conditional image synthesis problem.

3.3 c¢GANs and Cy-GANs: Generative Adversarial Image Synthesis

We propose to use the generator networks of cGANs or Cy-GANS to learn f : m — R XWx3,
Training is done on a real-world paired dataset (segmentation mask, real-world image) for cGAN,
while Cy-GANs can be trained with an unpaired dataset. Figure 2] gives an overview of enablers.
Details of datasets, cGANs, and Cy-GANs are discussed in Appendix [A]and Section 4]

3.3.1 Baseline: SPADE

The baseline cGAN employed in this study is a SPatially-Adaptive-DE- normalization (SPADE)
[12] network, which is a state-of-the-art cGAN based image synthesizer. SPADE outperforms other
image-to-image synthesizers by retaining semantic information against conventional normalization
operations [[12]]. This is achieved through the following de-normalization operation where the
activation value at layer 7 is given by:

hi _ Iui
; n,c,y,x c 1
UC
Where hﬁwyw is the activation before normalization, and z and o’ are the mean and standard

deviation in channel ¢. 4%, ,(m) and 3¢, (m) are learned varaibles that modulates the normalization
process. We refer the readers to the original SPADE paper [12] for more details.

We use a pre-trained SPADE on the Cityscapes dataset [32] as the mapping function f;, and obtain
the synthesized image with it I = f,(m).



3.4 Partial rendering

To increase visual fidelity and have full control over certain objects of interest, we propose using
physics-based rendering to obtain partially-rendered images I,.. Besides Os, P>, T5 and x, a light
source is also needed for rendering. Here we assume the properties and location of the light source
are fixed and known relative to x. Then the rendering equation [1]] can be used to render objects of
interest.

Lo(p7w7 )\7t) = LE(p7wO7 >\7t) + / f’l“(pawi7w0)\>t)Li(p7wi> Aat)(wln)dwl (3)
Q

Where Lo (p,w, A, t) is the total spectral radiance, A is wavelength, wy is the outgoing light direction,
w; is the incoming light direction, ¢ is time and p is a point in 3D space. L. (p,wo, A, t) is the emitted
spectral radiance, € is a unit hemisphere with the surface normal center n of p and it contains all
values for w;. f(p,w;,woA, t) is the bidirectional reflectance function and finally L;(p,w;, A, t) is
the spectral radiance of the incoming wavelength.

With Equation 3, the spectral radiance of each 3D point on a few objects of interest is obtained. Then,
the partially rendered image I, is formed with the same pinhole camera model introduced in Equation

3.5 Blending

Here we propose to blend the synthesized image I with the partially rendered image I, to get a hybrid
image Ij,. The hybrid image is defined as:

I, = b(L L. @)

Where the blending function b : (I, 1,.) — R7#W>3 maps the synthesized and partially rendered
images to a new hybrid RGB image. We compared three different blending functions b in this study.

Alpha blending. Taking I as the background image and I,. as the foreground image, the alpha
blended image Ij, can be obtained with:

Ih =al+ (1 — Oé)Ir (5)
Pyramid blending. With the gaussian pyramid mask G [33], L, the laplacian pyramid of the

foreground L., and L, laplacian pyramid of background I, the laplacian blended pixel b(4, j) can be
obtained with:

b(Z,j) = GR(i’j)La(ivj) + (1 - GR(Z>J))Lb(z7J) (6)

GAN blending. As a third blending option, we employed GP-GAN [34]]. The generator of GP-GAN
converts a naive copy-paste blended image to a realistic well-blended image. Besides conditional
GAN loss, GP-GAN employs an auxiliary /5 loss to sharpen the image.

L(z,xg) = ALy, (x,29) + (1 = X)Laav(z, 24) @)

Where L(x, x4) is the final loss, £y, is the [5 loss and L,y is the adverserial loss. A is a hyperparameter
and set to 0.999. Network details are given in Appendix

4 Experiments

4.1 Implementation details

We used a pre-trained SPADE network provided by the original authors [12]. The network was trained
on Cityscapes [32]], an urban driving dataset with paired semantic mask and image data. CARLA
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Figure 3: The proposed framework converts semantic images (a) to photo-realistic partially rendered
images (c) for an interactive virtual environment frame-by-frame. Obtaining (a) is relatively easy in a
virtual environment, whereas (b) is more expensive and can yield unrealistic results. For important
objects of interest such as lane markings and cars, a pure generative adversarial image-synthesizer (d)
cannot be trusted completely. (c) alleviates the shortcomings of (b) and (d).

[33], an open-source driving simulator built upon Unreal Engine 4 was utilized to obtain the semantic
layout and partially rendered images. We used the shading and lighting engine of Unreal Engine
4 in our experiments. Only vehicles and lane markings were considered as objects of interest. For
blending, we used a GP-GAN [34] trained on the Transient Attributes Database [36]].

4.2 Evaluation
4.2.1 Semantic retention

A common evaluation method for realistic image synthesis is semantic retention analysis.
Semantic retention measures the semantic correspondence between the conditional semantic mask
and the synthesized image. In summary, an external semantic segmentation network is used to
segment the synthesized image. Then, the discrepancy between the conditional semantic layout
(input of the synthesizer) and the semantic mask obtained from the generated image (output of the
pre-trained external segmentation network) is calculated with top-1 accuracy. A good synthesizer
should produce photo-realistic images while retaining the initial conditional semantic layout. In
other words, the initial semantic layout is accepted as the ground truth, and the image synthesizer’s
mask accuracy is calculated to obtain the retention score. Figure @ illustrates the semantic retention
analysis. A higher retention score is favorable.

In this study, we employed DeepLabV3 [37], a state-of-the-art semantic segmentation network, to
measure semantic retention. DeepLabV3 was trained on Cityscapes, an urban driving dataset [32].

4.2.2 FID

Fréchet Inception Distance (FID) [38] is a commonly used [1215] performance metric for measuring
visual fidelity. In summary, a deep neural network is employed to extract features of all images in a
dataset. Then, the covariance and mean of features obtained from synthesized and real images are
compared to get a score. We do not have any real-data corresponding to our virtual 3D scene, but
FID can still be used with unpaired data. As such, two different real-world datasets were
utilized as the ground truth. The synthesized images were then compared with FID scores. A lower
FID indicates high visual fidelity.
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Figure 4: An illustration of semantic retention analysis. (a) Full-render yields unrealistic shadows.
On the bottom right-hand side of the image, shadows of trees cast on the sidewalk were misclassified
as aroad by DeepLabV3. (b) Vanilla cGAN vehicles do not retain their shapes perfectly. (c) Blending
retains the semantic relationship with the source layout. This figure employs different color codes
to distinguish the semantic image formation and semantic segmentation processes for illustration
purposes. In practice, the same IDs were used for corresponding classes.

We used two datasets for FID calculations: Cityscape [32] and ADE20K [39]]. Details of network
architectures, semantic retention, and FID networks are given in Appendix [C]

4.2.3 Comparisions and ablations

Ablation studies were conducted to demonstrate the effect of each component of the proposed method.
Ablation list:

No partial-render (only vanilla cGAN or Cy-GAN)
No cGAN or Cy-GAN (only full render)
Alpha blend (cGAN or Cy-GAN + partial render)

Pyramid blend (cGAN or Cy-GAN + partial render)
GAN blend (cGAN or Cy-GAN + partial render)

M.

We also compared the performance of 2 alternative generative neural image synthesizers: SPADE
[12] and Cycle-GAN (Cy-GAN)[10].

We used vanilla CARLA [35] to obtain fully rendered images of an urban scene. The semantic
layout of the scene was also imported from CARLA and used as the conditional input for the
generative adversarial image synthesizers. Only vehicles and lane markings were considered by the
partial-renders.

In this work, the image synthesis was done frame-by-frame.

4.3 Results
4.3.1 Qualitative results

The qualitative results are shown in Figures[3] and[@ These figures illustrate fully rendered, hybrid,
and only-cGAN images. As can be seen in Figure 4] rendered shadows are unrealistic, while only-
cGAN generated vehicles cannot retain their shapes. These results underline the importance of partial
rendering of objects of interest such as cars, vans, and lane markings. The hybrid approach combines
the accuracy of a full-render with the realism of a generative model. More qualitative results are
given in Appendix



Table 1: Performance. Our methods outperform the physics-based computer graphics pipeline.

Cityscapes [32] ADE20K [39]

Method Sem.ret. 1 [ FID] | Sem.retf [ FID]
only render [35] 0.819 231.768 0.804 361.496
ours

only Cycle GAN [10] 0.343 221.609 0.430 246.597
only cGAN [12] 0.879 208.139 0.809 240.333
cy-GAN alpha blend 0.362 175.832 0.467 272.069
cy-GAN pyramid blend 0.353 196.911 0.457 279.704
cy-GAN GAN blend 0.318 194.191 0.454 266.615
c¢GAN alpha blend 0.879 188.809 0.801 272.877
c¢GAN pyramid blend 0.868 202.120 0.800 265.603
c¢GAN GAN blend 0.846 194.898 0.809 260.404

4.3.2 Quantitative results

FID and semantic retention scores are given in Table[l]

e The proposed hybrid blending approach outperformed conventional rendering and pure
generative adversarial image synthesis.

o Cityscapes dataset contains only urban driving scenes, while ADE20K has miscellaneous
scenes also. All of our virtual 3D scenes were in an urban environment. As such, most of
the methods got better FID scores for the Cityscapes dataset.

e GAN blend and Alpha blend showed similar performances. However, it should be noted that
the blending GAN was not trained on an urban driving dataset. The blending performance
can be possibly increased with a better blending dataset for training the blending GAN.

e The cGAN variants performed better on average as expected, as shown in Table (1| The
synthesized images were both realistic and loyal to the initial semantic layout. However,
c¢GAN requires a paired dataset for training.

e The full render was better at semantic retention than Cy-GAN variants. But Cy-GAN
variants had a higher FID score than rendering. This means that Cy-GAN can generate
realistic images, but fails to retain the semantic constraints.

5 Conclusions

This work introduced and investigated the feasibility of Hybrid Neural Computer Graphics (HNCG).
Preliminary results indicate that conventional computer graphics pipelines now have a strong alterna-
tive.

However, without a paired-dataset to train the cGAN, the proposed system cannot outperform the
conventional pipelines. Cycle consistency is not enough by itself, but potential future developments
in domain adaptation can benefit HNCG a great deal.

This work focused on frame-by-frame image formation. However, computer graphics applications
such as video games and simulations may require temporally more consistent approaches. Future
work can focus on video-to-video synthesis to this end.

6 Broader Impacts

This work does not reinforce an unfair bias nor has any purpose of harm or injury. On the contrary, it
has the potential for increasing the efficiency of artists, video game developers, simulation makers,
and other visual content creators.
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Appendix A Conditional GANs & Cycle GANs

A.1 Vanilla GAN

Generative Adverserial Networks (GAN) use a generator G model and a discriminator D model
in a simultaneous adverserial training strategy. The ultimate goal of G is realistic fake data &
generation that is indistinguishable from real data x € X. During training, G captures the data
distrubition p,. This is achieved with training a generative mapping function G(z) that maps an a
priori noise distrubition p,(z) to the data domain X. While G tries to genereate the most realistic Z,
the discriminator D tries to discriminate fake data & from real data . The output of D(z) is a scalar
indicating « being fake or real with a probability. G(z) and D(z), both can be neural networks, are
then trained simultaneously with the following min max game:

ngnmng(D, G) = Eg o pa (@) [logD(x)] + Esnp,(2) [log(1 — D(G(2)))] - 8)

A2 cGAN

Vanilla GAN learns to generate realistic data, but cannot impose a condition on the fake data.
Conditional Generative Adversarial Networks(cGANs) extended the original GAN and can generate
realistic fake data while retaining a conditional constraint. This is achieved by pairing the conditional
constraint y with the data x and creating a new paired dataset (, y). This pair can be an (RGB image,
pixel-wise semantic layout image), (image, text), and so on. = and y do not have to share the modality.
Figure E] shows an overview of cGAN and details can be found in [[16]].

minmaxV' (D, G) = Egrpy, (@) 102D(@[Y)] + Eznp. (z) [log(l — D(G(2]y)))] - ©)

cGAN

G Fake Real
X y y
» Discriminator, <
VA X X

X and Y have to be paired

Figure 5: Overview of cGAN.

A3 Cy-GAN

c¢GAN can successfully generate photo-realistic fake data with a conditional constraint. However, the
paired dataset requirement increases the cost of this approach. In comparison, building an unpaired
X and Y is relatively easy. Cycle GAN (Cy-GAN) enabled photo-realistic image synthesis with
unpaired data. In summary, Cy-GAN contains two generators, G(z) and F'(y), which maps X — Y
and Y — X respectively. Also, two discriminators, Dx and Dy, try to distinguish fake data. The
adversarial losses are similar to the original GAN; the addition is the novel cycle consistency loss.
This loss prevents the mappings of G and F' from straying away from each other.
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EGAN(Gj Dy, X, Y) = Ey,\,pdm(y) [IOgDy(y)] -+ Emwpm(z) [log(l — Dy(G(:l?)))] . (10)

The key idea of cycle GAN is using the two generators to create a cycle. First, G(z) generates
fake ¢, then F(G(x)) translates the fake ¢ back to &. If the cycle is consistent, then = =~ Z.
x— G(z) = F(G(x)) =~ x.

Leye(G F) = Egrpp(@) (1F(G(2)) = 2] + Eyppaw) IG(F () —yll] (1D

The final loss is:

L(G,F,Dx,Dy) = Lean(G, Dy, X,Y) + Loan(F, Dx,Y, X) + ALy (G, F) (12)

Cy-GAN

Backward cycle
Discriminatory

Forward cycle
Discriminatory
4

1
1
! "

G 1 : G
/\ : o /\
il B X N L ) KA N d
F : F
Cycle-consistency | X . | Y|l ' |x T 'Y Cycle-consistency
loss SC\/ ) : ( y’Z ........................... loss
TONGR] 1 |

1

X and Y do NOT have to be paired

Figure 6: Cy-GAN
An illustration of Cy-GAN is shown in Figure[6] and details can be found in [28].

A.4 Hyperparameters and implementation details

We used an Nvidia RTX 2080 to conduct all our computational experiments.

A.4.1 SPADE architecture and hyperparameters

We used a pre-trained SPADE network provided by the original authors [12]]. The network was trained
on Cityscapes [32], an urban driving dataset with paired semantic mask and image data. Architecture
details are shown in Figure[/} We refer the readers to the original paper [12] for more details.

A4.2 Cycle-GAN architecture and hyperparameters

We employed a pre-trained Cycle-GAN provided by the original authors [28]. The network was
trained on Cityscapes [32]]. The architecture details are given below.

Generator. Generator consists of 6 residual blocks. The coded architecture is as follows: c7s1-64,
d128, d256, R256, R256, R256, R256, R256, R256, ul28, u64, c7s1-3.

Where c7s1-64 is a 7x7 Conv instance normalization ReLLU (Conv) layer with 64 filters and stride of
1, d128 is a 3x3 Conv layer with 128 filters, R256 is a residual block with two 3x3 conv layers, ul28
is a 3x3 fractional stridden Conv layer with 128 filters and a stride of 0.5.
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SPADE Generator SPADE Discriminator

)

| Linear(256, 16384) |
|
| Reshape(1024, 4, 4) | | Concat |
: I
—-l SPADE ResBIk(1024), Upsample(2) |
: | 4x4 | 2-Conv-64 LReLU |
—-l SPADE ResBIk(1024), Upsample(2) | I
I | 4x4 | 2-Conv-128 IN LReLU |
—vl SPADE ResBIk(1024), Upsample(2) | I
T | 4x4 | 2-Conv-256 IN LReLU |
—-l SPADE ResBIk(512), Upsample(2) | I
| | 4x4 Conv-512 IN LReLU |
—ol SPADE ResBIk(256), Upsample(2) | I
T | 4x4 Conv-1 |
—-I SPADE ResBIk(128), Upsample(2) |
|

_.l SPADE ResBIk(64), Upsample(2) | \ Fake/real j

| 3x3 Conv-3, Tanh |

Figure 7: SPADE [12]] network architecture

Discriminator. The coded architecture of the discriminator is as follows: C64, C128, C256, C512,
where C64 denotes a Conv instance norm. Leaky ReLU layer with 64 filters. The final conv layer
outputs a 1-dimensional output.
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Appendix B Blending

GP-GAN Generator GP-GAN Discriminator

Foreground (fg) Background (bg) f 7 \

p
N

| Copy and paste fg over bg | | Conv 4x4 64filters |
[ | Conv 4x4 64filters | [ Conv4x4 128 filters |
g | Conv 4x4 128 filters | | Conv 4x4 256 filters |
Qe
g [ Conv 4x4 256 filters | [ Convax4 |51 2 filters |
| Conv 4x4 |512 filters |

- | \ | Real/fake | j
| FC(4000) |

| Deconv 4x4 512 filters |

[ Deconv 4x4 256 filters |

| Deconv 4x4 128 filters |

decoder
]

[ Deconv 4x4 64filters |

Blended image

Figure 8: Overview of GP-GAN blend.

GP-GAN was trained on the Transient Attributes Database [36]. We used a pre-trained GP-GAN
provided by the authors [34]. Network details are shown in Figure[§]
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Appendix C Semantic retention & FID

C.1 Semantic retention

In this study, we employed DeepLabV3 [37/] to measure semantic retention. Two different pre-trained
DeepLabV3 were utilized. The first one was trained on Cityscapes, an urban driving dataset [32]], and
the second was trained on ADE20K [39]]. ADE20K is a more diverse dataset and includes indoor
scenes also. Overview of semantic retention is shown in Figure 0]

Comparison with

/_—) accuracy

Semantic image
obtained with (Encoder
image formation

1x1 Conv
3x3 Conv

Atrous Conv Concat |+ 1x1 Conv]

l (Decoder
i e Upsample by 4
o s 1
[ix1 Conv —{ Concat_|—{ 3x3 Conv } Upi?ﬁp'e

DeeplabV3

Image generation

Prediction
Figure 9: Overview of semantic retention with Deeplabv3 [37].

C.2 Fréchet Inception Distance (FID)

FID[38]] is commonly used to measure visual fidelity. In summary, a deep neural network is employed
to extract features of all images in a dataset. Then, the covariance and mean of features obtained from
synthesized and real images are compared to get a score.

An InceptionV3 [40] that was trained on ImageNet [41] was employed as the feature extractor. After
features were extracted from the generated images and real-world images from Cityscapes [32] and
ADE20K [39], the FID is calculated as follows:

d? = ||py — p2|* + Tr(C1 + Cy — 21/(C1Ch)) (13)

Where p17 is the mean of features obtained from dataset 1, and C is the covariance. The smaller the
distance d? is, the more similar are the two datasets. In other words, a small FID indicates that fake
data is close to real-world data.
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Appendix D More qualitative results

Conventional pipe: render only

Cy-GAN only

Figure 10: Qualitative results.
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