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Introduction 
 
Vehicular accidents are one of the great societal challenges. In some demographics, they are the 
leading cause of death. It is important that accidents are thoroughly investigated. The immediate 
reason is to find out who is responsible and liable for the damages. But just as important is it to 
collect information about accidents to determine if changes to vehicles, infrastructure or policy 
could prevent or mitigate future accidents. One set of tools in the investigation uses 3D models of 
the scene. They are usually acquired with laser scanners. However, they are very costly in time and 
money and are therefore only used in severe cases, like fatal accidents. In recent years digital 
cameras and computer vision algorithms have become so inexpensive, powerful and efficient that 
it is now possible to create 3D models from a set of digital images at a very low cost. In previous 
research [1] we have shown that one can do this for vehicle accidents and that these 3D models 
are useful for accident investigation. In this project we worked on shape completing, parts 
segmentation, unsupervised multi-view stereopsis, and 3D transformer networks. The detailed 
description and evaluation of these can be found in the publications [2,3,4]. The long-term goal is 
to have a set of tools that can automatically analyze an accident from a set of images. In this 
report we describe two steps towards that goal: Point cloud completion and parts separation 
(Figure 1).  

 

 
Figure 1 Final analysis pipeline: Starting with the raw images SfM is used for partial reconstruction. A completion 

network follows to get to the complete reconstruction. Finally, a segmentation network clusters the points into different 
parts of the vehicle. 

Reconstruction and analysis pipeline 
 
The first step in the pipeline is the 3D reconstruction of the accident scene. On our website at [1] 
one can see many examples of 3D models of accidents. We are mostly using Colmap [5] to do the 
reconstruction because of its quality and ease of use. For a given scene (e.g. Figure 2 left) we take 
images all around the vehicle at different heights and angles. Colmap uses these images to create 
a sparse reconstruction and find the 6D location of the camera positions. Figure 2 (left middle) 
shows the camera positions in red and the sparse reconstruction as a point cloud. Next Colmap 
uses the know camera positions to do stereo vision on each image. The sum of all the stereo 
images becomes the dense reconstruction (Figure 2 right middle). Finally, one can build a mesh of 
the scene, also called a solid model (Figure 2 right). The dense point cloud is the input to the next 
steps of the analysis pipeline. We did some investigation to see if we can improve the dense 
reconstruction by using robust photometric consistency [4].  
 

 
Figure 2 3D model reconstruction: Structure from motion uses the raw input images to create a sparse point cloud of the 
scene. It simultaneously estimates where the images were taken (indicated by red symbols). A stereo algorithm produces 

the dense reconstruction. Finally, the point cloud can be converted into a solid mesh. 



 
Real-world point clouds are often incomplete. This might be because of occlusion, featureless 
surfaces, glare, insufficient number of images, people moving in the scene during data taking, or 
other errors. To better analyze the point cloud of an accident we want to be able to complete the 
point cloud. For that, we developed a point completion network [2]. It consists of an encoder and 
decoder, where the decoder first generates a coarse output and then a detailed output (Figure 3). 
To train our network, we use synthetic CAD models from ShapeNet [6] to create a large-scale 
dataset containing pairs of partial and complete point clouds. Specifically, we took 30974 models 
from 8 categories: airplane, cabinet, car, chair, lamp, sofa, table, vessel. 

 
Figure 3 Completion Network Architecture: The encoder abstracts the input point cloud X as a feature vector v. The 
decoder uses v to first generate a coarse output Ycoarse followed by a detailed output Ydetail. Each colored rectangle 

denotes a matrix row. Same color indicates same content. 

The result of shape completion on a car can be seen in Figure 4. Large parts of the original hood 
and roof are missing because these are areas of low texture. The completed model has points 
uniformly over all areas of the car. 
 

 
Figure 4 Shape completion example: Left is a dense reconstruction of a vehicle. One can see large parts of the hood and 

roof missing. On the right is the completed model, the points cover uniformly all areas of the vehicle. 

 
The next step in the analysis pipeline is to segment the vehicle into different parts. The input 
point cloud has an arbitrary orientation. We align it to a common orientation by using an iterative 
transformer network (Figure 5). The segmentation network DGCNN [7] is then applied to segment 
the object into its parts. The network was trained with a dataset containing 16,881 shapes from 16 
categories, annotated with 50 parts in total and 2-6 parts per category. 
Figure 6 shows the successful application of this segmentation on four different objects: 
motorcycle, bicycle, pickup truck and limousine.  



 
Figure 5 Iterative Transformer Network (IT-Net) predicts rigid transformations from point clouds in an iterative fashion.   

It can be used independently as a pose estimator or jointly with classification and segmentation networks. 

 
Figure 6 Successful segmentation of point clouds. The motorcycle and bicycle are segmented into frame, saddle, and tire, 

the cars are segmented into wheels, roof, hood and body. 

Conclusion and outlook 
With deep learning, point cloud analysis has made great progress. In this project, we showed that 
they are now able to complete point clouds of objects that were only partially observed or which 
have missing parts because of glare or surfaces with little texture. In the next step of the analysis 
the point cloud of the object can be segmented into different parts.  
There are several directions to be pursued and explored in future research. For one, the above 
networks should be trained with accident data. This is in principal straightforward, but in practice 
it will involve a lot of work. Point cloud analysis in general is a very active research field. Further 
progress is expected in the near future and these methods and algorithms should be modified and 
tuned for the specific purpose of accident investigation.  
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