
PCN: Point Completion Network

Wentao Yuan Tejas Khot David Held Christoph Mertz Martial Hebert

Robotics Institute, Carnegie Mellon University
{wyuan1, tkhot, dheld, cmertz, hebert}@cs.cmu.edu

Abstract

Shape completion, the problem of estimating the com-
plete geometry of objects from partial observations, lies
at the core of many vision and robotics applications. In
this work, we propose Point Completion Network (PCN),
a novel learning-based approach for shape completion.
Unlike existing shape completion methods, PCN directly
operates on raw point clouds without any structural as-
sumption (e.g. symmetry) or annotation (e.g. seman-
tic class) about the underlying shape. It features a de-
coder design that enables the generation of fine-grained
completions while maintaining a small number of param-
eters. Our experiments show that PCN produces dense,
complete point clouds with realistic structures in the miss-
ing regions on inputs with various levels of incompleteness
and noise, including cars from LiDAR scans in the KITTI
dataset. Code, data and trained models are available at
https://cs.cmu.edu/∼wyuan1/pcn/.

1. Introduction
Real-world 3D data are often incomplete, causing loss in

geometric and semantic information. For example, the cars
in the LiDAR scan shown in Figure 1 are hardly recogniz-
able due to sparsity of the data points and missing regions
caused by limited sensor resolution and occlusion. In this
work, we present a novel learning-based method to com-
plete these partial data using an encoder-decoder network
that directly maps partial shapes to complete shapes, both
represented as 3D point clouds.

Our work is inspired by a number of recent works [9, 48]
which leverage large dataset of synthetic shapes to train
deep neural networks that can infer the complete geometry
from a single or a combination of partial views. However,
a key difference between our approach and existing ones is
in the representation for 3D data. The majority of existing
methods voxelize the 3D data into occupancy grids or dis-
tance fields where convolutional networks can be applied.
However, the cubically growing memory cost of 3D voxel
grids limits the output resolution of these methods. Further,
detailed geometry is often lost as an artifact of discretiza-

Figure 1: (Top) Raw LiDAR scan from KITTI [13]. Note
how the cars are barely recognizable due to incompleteness
of the data. (Bottom) Completed scan generated by PCN
on individual car point clouds segmented from the scene.

tion. In contrast, our network is designed to operate on raw
point clouds. This prevents the high memory cost and loss
of geometric information caused by voxelization and allows
our network to generate more fine-grained completions.

Designing a network that consumes and generates point
clouds involves several challenges. First, a point cloud is

1

ar
X

iv
:1

80
8.

00
67

1v
1

 [
cs

.C
V

]
 2

 A
ug

 2
01

8

https://cs.cmu.edu/~wyuan1/pcn/

an unordered set, which means permutations of the points
do not change the geometry they represent. This necessi-
tates the design of a feature extractor and a loss function that
are permutation invariant. Second, there is no clear defini-
tion of local neighbourhoods in point clouds, making it dif-
ficult to apply any convolutional operation. Lastly, existing
point cloud generation networks only generate a small set of
points, which is not sufficient to capture enough detail in the
output shape. Our proposed model tackles these challenges
by combining a permutation invariant, non-convolutional
feature extractor and a coarse-to-fine point set generator in
a single network that is trained end-to-end.

The main contributions of this work are:
• a learning-based shape completion method that oper-

ates directly on 3D point clouds without intermediate
voxelization;
• a novel network architecture that generates a dense,

complete point cloud in a coarse-to-fine fashion;
• extensive experiments showing improved completion

results over strong baselines, robustness against noise
and sparsity, generalization to real-world data and how
shape completion can aid downstream tasks.

2. Related Work
3D Shape Completion Existing methods for 3D shape
completion can be roughly categorized into geometry-
based, alignment-based and learning-based approaches.

Geometry-based approaches complete shapes using ge-
ometric cues from the partial input without any exter-
nal data. For example, surface reconstruction methods
[3, 10, 33, 41, 49, 54, 62] generate smooth interpolations
to fill holes in locally incomplete scans. Symmetry-driven
methods [29, 30, 35, 36, 46, 52, 55] identify symmetry axes
and repeating regular structures in the partial input in or-
der to copy parts from observed regions to unobserved re-
gions. These approaches assume moderately complete in-
puts where the geometry of the missing regions can be in-
ferred directly from the observed regions. This assumption
does not hold on most incomplete data from the real world.

Alignment-based approaches complete shapes by match-
ing the partial input with template models from a large
shape database. Some [15, 24, 32, 34, 43] retrieve the com-
plete shape directly while some [17, 19, 28, 45, 52] retrieve
object parts and then assemble them to obtain the complete
shape. Other works [6, 12, 14, 21, 22, 39] deform the re-
trieved model to synthesize shapes that are more consistent
with the input. There are also works [7, 25, 31, 42, 61]
that use geometric primitives such as planes and quadrics in
place of a shape database. These methods require expensive
optimization during inference, making them impractical for
online applications. They are also sensitive to noise.

Learning-based approaches complete shapes with a pa-
rameterized model (often a deep neural network) that di-
rectly maps the partial input to a complete shape, which

offers fast inference and better generalization. Our method
falls into this category. While most existing learning-based
methods [9, 16, 44, 47, 50, 54, 56, 59] represents shapes
using voxels, which are convenient for convolutional neu-
ral networks, our method uses point clouds, which preserve
complete geometric information about the shapes while be-
ing memory efficient. One recent work [26] also explores
deformable meshes as the shape representation. However,
their method assumes all the shapes are in correspondence
with a common reference shape, which limits its applicabil-
ity to certain shape categories such as humans or faces.

Deep Learning on Point Clouds Our method is built
upon several recent advances in deep neural networks that
operates on point clouds. PointNet and its extension [37,
38] is the pioneer in this area and the state-of-the-art while
this work was developed. It combines pointwise multi-
layer perceptrons with a symmetric aggregation function
that achieves invariance to permutation and robustness to
perturbation, which are essential for effective feature learn-
ing on point clouds. Several alternatives [23, 51, 53, 57, 58]
have been proposed since then. Any of these can be incor-
porated into our proposed model as the encoder.

There are relatively fewer works on decoder networks
which generates point sets from learned features. [1] uses
a simple fully-connected decoder, while [11] proposes a
multi-branch decoder combining fully-connected and de-
convolution layers. Recently, [60] introduces an interest-
ing decoder design which mimics the deformation of a 2D
plane into a 3D surface. However, none of these methods
generates more than 2048 points. Our model combines the
advantages of these designs to generate higher resolution
outputs in an efficient manner.

3. Problem Statement
Let X be a set of 3D points lying on the observed sur-

faces of an object obtained by a single observation or a se-
quence of observations from a 3D sensor. Let Y be a dense
set of 3D points uniformly sampled from the observed and
unobserved surfaces of the object. We define the shape
completion problem as predicting Y given X . Note that
under this formulation, X is not necessarily a subset of Y
and there is no explicit correspondence between points in
X and points in Y , because they are independently sampled
from the underlying object surfaces.

We tackle this problem using supervised learning. Lever-
aging a large-scale synthetic dataset where samples of X
and Y can be easily acquired, we train a neural network to
predict Y directly from X . The network is generic across
multiple object categories and does not assume anything
about the structure of underlying objects such symmetry or
planarity. The network architecture is described in Section 4
and the training process is described in Section 5.1.

2

Figure 2: PCN Architecture. The encoder abstracts the input point cloud X as a feature vector v. The decoder uses v to first
generate a coarse output Ycoarse followed by a detailed output Ydetail. Each colored rectangle denotes a matrix row. Same
color indicates same content.

4. Point Completion Network
In this section, we describe the architecture of our pro-

posed model, the Point Completion Network (PCN). As
shown in Figure 2, PCN is an encoder-decoder network.
The encoder takes the input point cloud X and outputs a k-
dimensional feature vector. The decoder takes this feature
vector and produces a coarse output point cloud Ycoarse and
a detailed output point cloud Ydetail. The loss function L is
computed between the ground truth point cloud Ygt and the
outputs of the decoder, which is used to train the entire net-
work through backpropagation. Note that, unlike an auto-
encoder, we do not explicitly enforce the network to retain
the input points in its output. Instead, it learns a projection
from the space of partial observations to the space of com-
plete shapes. Next, we describe the specific design of the
encoder, decoder and the loss function used.

4.1. Point Feature Encoding
The encoder is in charge of summarizing the geomet-

ric information in the input point cloud as a feature vector
v ∈ Rk where k = 1024. Our proposed encoder is an ex-
tended version of PointNet [37]. It inherits the invariance to
permutation and tolerance to noise from PointNet and can
handle inputs with various number of points.

Specifically, the encoder consists of two stacked Point-
Net (PN) layers. The first layer consumes m input points

represented as an m × 3 matrix P where each row is the
3D coordinate of a point pi = (x, y, z). A shared multi-
layer perceptron (MLP) consisting of two linear layers with
ReLU activation is used to transform each pi into a point
feature vector fi. This gives us a feature matrix F whose
rows are the learned point features fi. Then, a point-wise
maxpooling is performed on F to obtain a global feature g,
where gi = maxi=1,...,m{Fi}. The second PN layer takes
F and g as input. It first concatenates g to each fi to ob-
tain an augmented point feature matrix F̃ whose rows are
the concatenated feature vectors [fi g]. Then, F̃ is passed
through another shared MLP and point-wise max pooling
similar to the ones in the first layer, which gives the final
feature vector v.

4.2. Multistage Point Generation
The decoder is responsible for generating the output

point cloud from the feature vector v. Our proposed de-
coder combines the advantages of the fully-connected de-
coder [1] and the folding-based decoder [60] in a multistage
point generation pipeline. In our experiments, we show that
our decoder outperforms either the fully-connected or the
folding-based decoder on its own.

Our key observation is that the fully-connected decoder
is good at predicting a sparse set of points which represents
the global geometry of a shape. Meanwhile, the folding-
based decoder is good at approximating a smooth surface

3

which represents the local geometry of a shape. Thus, we
divide the generation of the output point cloud into two
stages. In the first stage, a coarse output Ycoarse of s points
is generated by passing v through a fully-connected net-
work with 3s output units and reshaping the output into
a s × 3 matrix. In the second stage, for each point qi
in Ycoarse, a patch of t = u2 points is generated in the
local coordinates centered at qi via the folding operation
(refer to Section B in the supplementary for details), and
transformed into the global coordinates by adding qi to the
output. Combining all s patches gives the detailed output
Ydetail consisting of n = st points. This multistage process
allows our network to generate a dense output point cloud
with fewer parameters than fully-connected decoder (see
Table 1) and more flexibility than folding-based decoder.

4.3. Loss Function
The loss function measures the difference between the

output point cloud and the ground truth point cloud. Since
both point clouds are unordered, the loss needs to be invari-
ant to permutations of the points. Two candidates of permu-
tation invariant functions are introduced by [11] – Chamfer
Distance (CD) and Earth Mover’s Distance (EMD).

(1)

CD(S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

‖x− y‖2

+
1

|S2|
∑
y∈S2

min
x∈S1

‖y − x‖2

CD (1) calculates the average closest point distance be-
tween the output point cloud S1 and the ground truth point
cloud S2. We use the symmetric version of CD where the
first term forces output points to lie close to ground truth
points and the second term ensures the ground truth point
cloud is covered by the output point cloud. Note that S1

and S2 need not be the same size to calculate CD.

EMD(S1, S2) = min
φ:S1→S2

1

|S1|
∑
x∈S1

‖x− φ(x)‖2 (2)

EMD (2) finds a bijection φ : S1 → S2 which mini-
mizes the average distance between corresponding points.
In practice, finding the optimal φ is too expensive, so we
use an iterative (1 + ε) approximation scheme [4]. Unlike
CD, EMD requires S1 and S2 to be the same size.

(3)L(Ycoarse, Ydetail, Ygt) = d1(Ycoarse, Ỹgt)

+ α d2(Ydetail, Ygt)

Our proposed loss function (3) consists of two terms, d1
and d2, weighted by hyperparameter α. The first term is the
distance between the coarse output Ycoarse and the subsam-
pled ground truth Ỹgt which has the same size as Ycoarse.

The second term is the distance between the detailed output
Ydetail and the full ground truth Ygt.

In our experiments, we use both CD and EMD for d1 but
only CD for d2. This is because the O(n2) complexity of
the EMD approximation scheme makes it too expensive to
compute during training when n is large, while CD can be
computed with O(n log n) complexity using efficient data
structure for nearest neighbour search such as KDTree.

5. Experiments
In this section, we first describe the creation of a large-

scale, multi-category dataset to train our model. Next, we
compare our method against existing methods and ablated
versions of our method on synthetic shapes. Finally, we
show completion results on real-world point clouds and
demonstrate how they can help downstream tasks such as
point cloud registration.

5.1. Data Generation and Model Training
To train our model, we use synthetic CAD models from

ShapeNet to create a large-scale dataset containing pairs
of partial and complete point clouds (X,Y). Specifically,
we take 30974 models from 8 categories: airplane, cabi-
net, car, chair, lamp, sofa, table, vessel. The complete point
clouds are created by sampling 16384 points uniformly on
the mesh surfaces and the partial point clouds are gener-
ated by back-projecting 2.5D depth images into 3D. We
use back-projected depth images for partial inputs instead
of subsets of the complete point cloud in order to bring the
input distribution closer to real-world sensor data. For each
model, 8 partial point clouds are generated from 8 randomly
distributed viewpoints. Note that the partial point clouds
can have different sizes.

We choose to use a synthetic dataset to generate train-
ing data because it contains complete, detailed 3D models
of objects that are not available in real-world datasets. De-
spite the fact that recent datasets such as ScanNet [8] or
S3DIS [2] have very high quality 3D reconstructions, these
reconstructions have missing regions due to the limitations
of the scanner’s view, and thus are not good enough to use
as ground truth for our model.

We reserve 100 models for validation and 150 models
for testing. The rest is used for training. All our models
are trained using the Adam [20] optimizer with an initial
learning rate of 0.0001 for 50 epochs and a batch size of 32.
The learning rate is decayed by 0.7 every 50K iterations.

5.2. Completion Results on ShapeNet
In this subsection, we compare our method against sev-

eral strong baselines, including a representative volumetric
network and modified versions of our model, on synthetic
point clouds from ShapeNet. We also test the generalizabil-
ity of these methods to novel shapes and the robustness of
our model against occlusion and noise.

4

(a) Results on trained categories (b) Results on novel categories

Figure 3: Quantitative comparison on ShapeNet. For both CD (top) and EMD (below), lower is better. (a) shows results
for test instances from the same categories used in training. (b) shows results for test instances from categories not included
in training, which are divided into similar (bus, bed, bookshelf, bench) and dissimilar (guitar, motorbike, skateboard, pistol).

(a) Chamfer Distance (CD) (b) Earth Mover’s Distance (EMD) (c) L1 distance

Figure 4: Comparison between PCN-EMD and 3D-EPN. (a) and (b) shows comparison of point cloud outputs. The x-axis
represents different object instances. The height of the blue bar indicates the amount of improvement of PCN-EMD over
3D-EPN. The red curve is the error of 3D-EPN and the difference between the red curve and the blue bar is the error of
PCN-EMD. PCN-EMD improves on the majority of instances. (c) shows comparison of distance field outputs. On the y-axis
is the average L1 distance on occluded voxels between output and ground truth distance fields. PCN-EMD achieves lower
L1 distance on higher resolutions.

Baselines Previous point-based completion methods ei-
ther assume more complete inputs than we have [18] or
prior knowledge of the shape such as semantic class, sym-
metry and part segmentation [52], and thus are not directly
comparable to our method. Here, we compare our model
against four strong baselines which, like our method, work
on objects from multiple categories with different levels of
incompleteness.

1) 3D-EPN [9]: This is a representative of the class of
volumetric completion methods that is also trained end-to-
end on large synthetic dataset. To compare the distance field
outputs of 3D-EPN with the point cloud outputs of PCN,
we convert the distance fields into point clouds by extract-
ing the isosurface at a small value d and uniformly sampling
16384 points on the resulting mesh. To ensure fair compar-
ison, we also convert the point cloud outputs of PCN into
distance fields by calculating the distance from grid centers

to the closest point in the output.
2) FC: This is a network that uses the same encoder as

PCN but the decoder is a 3-layer fully-connected network
which directly outputs the coordinates of 16384 points.

3) Folding: This is a network that also uses the same en-
coder as PCN but the decoder is purely folding-based [60],
which deforms a 128-by-128 2D grid into a 3D point cloud.

4) PN2: This is a network that uses the same decoder as
our proposed model but the encoder is PointNet++ [38].

We provide two versions of our model for compari-
son, PCN-CD and PCN-EMD. The number of points in the
coarse and detailed outputs are s = 1024 and n = 16384
respectively. For the loss on coarse output, PCN-CD uses
CD and PCN-EMD uses EMD. Note that both models use
CD for the loss on detailed output due to the computational
complexity of EMD.

5

Test Set We created two test sets: one consists of 150
reserved shapes from the 8 object categories on which the
models are trained; the other consists of 150 models from 8
novel categories that are not in the training set. We divide
the novel categories into two groups: one that is visually
similar to the training categories – bed, bench, bookshelf
and bus, and another that is visually dissimilar to the train-
ing categories – guitar, motorbike, pistol and skateboard.
The quantitative comparisons are shown in Figure 3 and
some qualitative examples are shown in Figure 9.

Metrics The metrics we use on point clouds are CD and
EMD between the output and ground truth point clouds, as
defined in 4.3. An illustration of the difference between
the two metrics is shown in Figure 5. We can see that CD
is high where the global structure is different, e.g. around
the corners of the chair back. On the other hand, EMD is
more evenly distributed, as it penalizes density difference
between the two point clouds. Note that on average, EMD
is much higher than CD. This is because EMD requires
one-to-one correspondences between the points, whereas
the point correspondences used by CD can be one-to-many.

The metric we use on distance fields is the L1 distance
between the output and ground truth distance fields, same
as in [8]. To have comparable numbers across different di-
mensions, we convert the error from the voxel distance to
distance in the model’s metric space.

Figure 5: Illustration of CD (left) and EMD (right). The
top row shows the output of our model and the bottom row
shows the ground truth. The points on the left are colored
by their distance to the closest point in the other point cloud
(nearest neighbor (NN) distance). The points on the right
are colored by their distance to the corresponding point un-
der the optimal bijection (match distance). Average CD is
the mean of the NN distances and average EMD is the mean
of the match distances.

Generalizability to Novel Objects As shown in Fig-
ure 3b, our method outperforms all baselines on object from
novel categories. More importantly, our model’s perfor-
mance is not significantly affected even on visually dissim-
ilar categories (e.g. the pistol in Figure 9). This shows the
generality of the shape prior learned by our model.

Comparison to Volumetric Method It can be seen that
our method outperforms 3D-EPN by a large margin on
both CD and EMD. To better interpret the numbers, in Fig-
ures 4a, 4b, we show the amount of improvement of our
completion results over that of 3D-EPN on CD and EMD
for each instance in the test set. The results of our method
improve on the majority of instances. Further, they improve
the most on examples where the error of 3D-EPN is high,
indicating its ability to handle challenging cases where pre-
vious methods fail.

In Figure 4c, we show that our method achieves lowerL1

distance when its outputs are converted to a distance field.
Moreover, the improvement of our method over 3D-EPN is
more significant at higher resolutions.

Decoder Comparison The results in Figure 3 show how
our proposed decoder compares with existing decoder de-
signs. Our multistage design which combines the advan-
tages of fully-connected and folding-based decoders outper-
forms either design on its own. From the qualitative results,
we observe that the fully-connected decoder does not have
any constraints on the local density of the output points, and
thus the output points are often over-concentrated in areas
such as table top, which results in high EMD. On the other
hand, the folding-based decoder often produces points that
are floating in space and not consistent with the global ge-
ometry of the ground truth shape, which results in high CD.
This is because the shapes in our dataset contain many con-
cavities and sharp edges, which makes globally folding a
2D plane into a 3D shape very challenging. FoldingNet [60]
addresses this by chaining two folding operations. How-
ever, by only doing the folding operation locally, our de-
coder is able to achieve better performance with only one
folding operation.

Encoder Comparison Another pair of comparison
shown in Figure 3 is between the stacked PN and PN2 [38]
as the encoder. PN2 is a representative of the class of hi-
erarchical feature extraction networks that aggregate local
information before global pooling. Our results show that
it is outperformed by our stacked PN encoder which uses
only global pooling. We believe this is because local pool-
ing is less stable than global pooling due to suboptimality
in the selection of local neighbourhoods for the partial data
we are dealing with. Thus, we argue that stacking PN lay-
ers instead of doing local pooling is a better way of mixing
local and global information.

6

Number of Parameters As shown in Table 1, our model
has an order of magnitude fewer parameters than 3D-EPN
and FC while achieving significantly better performance.

Table 1: Number of trainable model parameters

Method 3D-EPN FC Folding PN2 Ours

Params 52.4M 53.2M 2.40M 6.79M 6.85M

Robustness to occlusion and noise Now, we test the ro-
bustness of our method to sensor noise and large occlu-
sions. Specifically, we perturbed the depth map with Gaus-
sian noise whose standard deviation is 0.01 times the scale
of the depth measurements, and occluded it with a mask that
covers p percent of points, where p ranges from 0% to 80%.
Additionally, we randomly set 1% of the measurements to
dmax = 1.6.

As we can see from Figure 6, the errors (CD and EMD)
increase only gradually as more and more regions are oc-
cluded. Note that our model is not trained with these oc-
cluded and noisy examples, but it is still robust to them.
The strong shape prior that the model has learned helps it to
ignore the noisy points and predict reasonable outputs under
occlusions. This in part explains its strong generalizability
to real-world data, as we will show in the following section.

Figure 6: Qualitative (top) and quantitative (bottom) results
on noisy inputs with different level of visibility

5.3. Completion Results on KITTI
In this experiment, we test our completion method on

partial point clouds from real-world LiDAR scans. Specifi-
cally, we take a sequence of Velodyne scans from the KITTI
dataset [13]. For each frame, we extract points within the
object bounding boxes labeled as cars, which results in 2483
partial point clouds. Each point cloud is then transformed
to the box’s coordinates, completed with a PCN trained on
cars from ShapeNet, and transformed back to the world

Table 2: Quantitative results on KITTI.

Fidelity MMD Consistency Consistency (input)

0.02800 0.01850 0.01163 0.05121

frame. The process is illustrated in Figure 1. We use a
model trained specifically on cars here to incorporate prior
knowledge of the object class. Having such prior knowl-
edge is not necessary for our method but will help the model
achieve better performance.

We do not have the complete ground truth point clouds
for KITTI. Thus, we propose three alternative metrics to
evaluate the performance of our model: 1) Fidelity, which
is the average distance from each point in the input to its
nearest neighbour in the output. This measures how well the
input is preserved; 2) Minimal Matching Distance (MMD),
which is the Chamfer Distance (CD) between the output and
the car point cloud from ShapeNet that is closest to the out-
put point cloud in terms of CD. This measures how much
the output resembles a typical car; 3) Consistency, which is
the average CD between the completion outputs of the same
instance in consecutive frames. This measures how consis-
tent the network’s outputs are against variations in the in-
puts. As a comparison, we also compute the average CD
between the inputs in consecutive frames, denoted as Con-
sistency (input). These metrics are reported in Table 2.

Unlike point clouds back-projected from 2.5D images,
point clouds from LiDAR scans are very sparse. The 2483
partial point clouds here contain 440 points on average, with
some having fewer than 10 points. In contrast, point clouds
from 2.5D images used in training usually contain more
than 1000 points. In spite of this, our model is able to trans-
fer easily between the two distributions without any fine
tuning, producing consistent completions from extremely
partial inputs. This can be attributed to the use of point-
based representation, which is less sensitive to input density
than volumetric representations. In addition, each predic-
tion with our model takes only 0.0012s on a Nvidia GeForce
1080Ti GPU and 2s on a 3.60GHz Intel Core i7-7700 CPU,
making it suitable for real-time applications.

5.4. Point Cloud Registration with Completion
Many common tasks on point clouds can benefit from a

more complete and denser input. Here, as an example of
such applications, we show that the output of our network
can improve the results of point cloud registration. Specif-
ically, we perform registration between car point clouds
from neighboring frames in the same Velodyne sequence
from Section 5.3, using a simple point-to-point ICP [5] al-
gorithm implemented in PCL [40]. This results in 2396
registration instances. We provide two kinds of inputs to
the registration algorithm – one is partial point clouds from
the original scans, another is completed point clouds by a

7

(a) Rotation error (b) Translation error (c) Qualitative example

Figure 7: Improvements on point cloud registration. In (a) and (b), the x-axis represents different registration instances.
The height of the blue bar indicates the amount of improvement of registration with complete point clouds over registration
with partial point clouds. The red curve is the error of registration with partial point clouds and the difference between the
red curve and the blue bar is the error of registration with complete point clouds. In (c), registered partial point clouds are
shown on the left and registered complete point clouds of the same instances are shown on the right.

PCN trained on cars from ShapeNet. We compare the rota-
tional and translational error on the registration results with
partial and complete inputs. The rotational error is com-
puted as 2 cos−1(2〈q1, q2〉2 − 1), where q1 and q2 are the
quaternion representations of the ground truth rotation and
the rotation computed by ICP. This measures the angle be-
tween q1 and q2. The translational error is computed as
‖t1 − t2‖2, where t1 is the ground truth translation and t2
is the translation computed by ICP.

As shown in Figure 7a and 7b, both rotation and trans-
lation estimations are more accurate with complete point
clouds produced by PCN, and the improvement is most sig-
nificant when the error with partial point clouds is large.
Figure 7c shows some qualitative examples. As can be seen,
the complete point clouds are much easier to register be-
cause they contain larger overlaps, a lot of which are regions
completed by PCN. Note that the improvement brought by
our completion results is not specific to ICP, but can be ap-
plied to any registration algorithm.

6. Discussion
We have identified two prominent failure modes for our

model. First, there are some object instances consisting of
multiple disconnected parts. Our model fails to recognize
this and incorrectly connects the parts. This is likely a re-
sult of the strong priors learned from the training dataset
where almost all objects are connected. Second, some ob-
jects contain very thin structures such as wires. Our model
is occasionally unable to recover these structures. There are
two possible reasons. First, the points from these structures
are often sparse since they have small surface areas, which
makes the 3D feature extraction more difficult. Second, un-
like most object surfaces the local geometry of thin struc-
tures does not resemble the 2D grid, making it challenging
for our model to deform a 2D grid into these thin structures.
Some visualizations of these failures are shown in Figure 8.

Figure 8: Failure modes: thin structures (top) and discon-
nected parts (bottom).

7. Conclusion
We have presented a new approach to shape completion

using point clouds without any voxelization. To this end, we
have designed a deep learning architecture which combines
advantages from existing architectures to generate a dense
point cloud in a coarse-to-fine fashion, enabling high reso-
lution completion with much fewer parameters than voxel-
based models. Our method is effective across multiple ob-
ject categories and works with inputs from different sensors.
In addition, it shows strong generalization performance on
unseen objects and real-world data. Our point-based com-
pletion method is more scalable and robust than voxel-based
methods, which makes it a better candidate for completion
of more complex data such as scenes.

8

Figure 9: Qualitative completion results on ShapeNet. Top four rows are results on categories used during training. Bottom
four rows are results on categories not seen during training.

9

Acknowledgements
This project is supported by Carnegie Mellon Univer-

sity’s Mobility21 National University Transportation Cen-
ter, which is sponsored by the US Department of Trans-
portation. We would also like to thank Adam Harley,
Leonid Keselman and Rui Zhu for their helpful comments
and suggestions.

References
[1] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas.

Learning representations and generative models for 3d point
clouds. arXiv preprint arXiv:1707.02392, 2017. 2, 3

[2] I. Armeni, S. Sax, A. R. Zamir, and S. Savarese. Joint 2d-3d-
semantic data for indoor scene understanding. arXiv preprint
arXiv:1702.01105, 2017. 4

[3] M. Berger, A. Tagliasacchi, L. Seversky, P. Alliez, J. Levine,
A. Sharf, and C. Silva. State of the art in surface reconstruc-
tion from point clouds. In EUROGRAPHICS star reports,
volume 1, pages 161–185, 2014. 2

[4] D. P. Bertsekas. A distributed asynchronous relaxation algo-
rithm for the assignment problem. In Decision and Control,
1985 24th IEEE Conference on, pages 1703–1704. IEEE,
1985. 4

[5] P. J. Besl and N. D. McKay. Method for registration of 3-d
shapes. In Sensor Fusion IV: Control Paradigms and Data
Structures, volume 1611, pages 586–607. International Soci-
ety for Optics and Photonics, 1992. 7

[6] V. Blanz and T. Vetter. A morphable model for the synthesis
of 3d faces. In Proceedings of the 26th annual conference on
Computer graphics and interactive techniques, pages 187–
194. ACM Press/Addison-Wesley Publishing Co., 1999. 2

[7] A.-L. Chauve, P. Labatut, and J.-P. Pons. Robust piecewise-
planar 3d reconstruction and completion from large-scale un-
structured point data. In Computer Vision and Pattern Recog-
nition (CVPR), 2010 IEEE Conference on, pages 1261–1268.
IEEE, 2010. 2

[8] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser,
and M. Nießner. Scannet: Richly-annotated 3d reconstruc-
tions of indoor scenes. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), volume 1, 2017. 4,
6

[9] A. Dai, C. R. Qi, and M. Nießner. Shape completion us-
ing 3d-encoder-predictor cnns and shape synthesis. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), volume 3, 2017. 1, 2, 5, 12

[10] J. Davis, S. R. Marschner, M. Garr, and M. Levoy. Filling
holes in complex surfaces using volumetric diffusion. In 3D
Data Processing Visualization and Transmission, 2002. Pro-
ceedings. First International Symposium on, pages 428–441.
IEEE, 2002. 2

[11] H. Fan, H. Su, and L. Guibas. A point set generation network
for 3d object reconstruction from a single image. In Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
volume 38, 2017. 2, 4

[12] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part-

based models. IEEE transactions on pattern analysis and
machine intelligence, 32(9):1627–1645, 2010. 2

[13] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets
robotics: The kitti dataset. The International Journal of
Robotics Research, 32(11):1231–1237, 2013. 1, 7

[14] S. Gupta, P. Arbeláez, R. Girshick, and J. Malik. Aligning
3d models to rgb-d images of cluttered scenes. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4731–4740, 2015. 2

[15] F. Han and S.-C. Zhu. Bottom-up/top-down image parsing
with attribute grammar. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 31(1):59–73, 2009. 2

[16] X. Han, Z. Li, H. Huang, E. Kalogerakis, and Y. Yu. High-
resolution shape completion using deep neural networks for
global structure and local geometry inference. arXiv preprint
arXiv:1709.07599, 2017. 2

[17] E. Kalogerakis, S. Chaudhuri, D. Koller, and V. Koltun. A
probabilistic model for component-based shape synthesis.
ACM Transactions on Graphics (TOG), 31(4):55, 2012. 2

[18] M. Kazhdan and H. Hoppe. Screened poisson surface recon-
struction. ACM Transactions on Graphics (ToG), 32(3):29,
2013. 5

[19] V. G. Kim, W. Li, N. J. Mitra, S. Chaudhuri, S. DiVerdi,
and T. Funkhouser. Learning part-based templates from large
collections of 3d shapes. ACM Transactions on Graphics
(TOG), 32(4):70, 2013. 2

[20] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014. 4

[21] D. Li, T. Shao, H. Wu, and K. Zhou. Shape completion from
a single rgbd image. IEEE transactions on visualization and
computer graphics, 23(7):1809–1822, 2017. 2

[22] G. Li, L. Liu, H. Zheng, and N. J. Mitra. Analysis, recon-
struction and manipulation using arterial snakes. ACM SIG-
GRAPH Asia 2010 papers on-SIGGRAPH ASIA’10, 2010. 2

[23] Y. Li, R. Bu, M. Sun, and B. Chen. Pointcnn. arXiv preprint
arXiv:1801.07791, 2018. 2

[24] Y. Li, A. Dai, L. Guibas, and M. Nießner. Database-assisted
object retrieval for real-time 3d reconstruction. In Computer
Graphics Forum, volume 34, pages 435–446. Wiley Online
Library, 2015. 2

[25] Y. Li, X. Wu, Y. Chrysathou, A. Sharf, D. Cohen-Or, and
N. J. Mitra. Globfit: Consistently fitting primitives by dis-
covering global relations. In ACM Transactions on Graphics
(TOG), volume 30, page 52. ACM, 2011. 2

[26] O. Litany, A. Bronstein, M. Bronstein, and A. Makadia. De-
formable shape completion with graph convolutional autoen-
coders. arXiv preprint arXiv:1712.00268, 2017. 2

[27] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne.
Journal of machine learning research, 9(Nov):2579–2605,
2008. 14

[28] A. Martinovic and L. Van Gool. Bayesian grammar learn-
ing for inverse procedural modeling. In Computer Vision
and Pattern Recognition (CVPR), 2013 IEEE Conference on,
pages 201–208. IEEE, 2013. 2

[29] N. J. Mitra, L. J. Guibas, and M. Pauly. Partial and approx-
imate symmetry detection for 3d geometry. ACM Transac-
tions on Graphics (TOG), 25(3):560–568, 2006. 2

[30] N. J. Mitra, M. Pauly, M. Wand, and D. Ceylan. Symmetry
in 3d geometry: Extraction and applications. In Computer

10

Graphics Forum, volume 32, pages 1–23. Wiley Online Li-
brary, 2013. 2

[31] L. Nan, A. Sharf, H. Zhang, D. Cohen-Or, and B. Chen.
Smartboxes for interactive urban reconstruction. ACM
Transactions on Graphics (TOG), 29(4):93, 2010. 2

[32] L. Nan, K. Xie, and A. Sharf. A search-classify approach for
cluttered indoor scene understanding. ACM Transactions on
Graphics (TOG), 31(6):137, 2012. 2

[33] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa. Laplacian
mesh optimization. In Proceedings of the 4th international
conference on Computer graphics and interactive techniques
in Australasia and Southeast Asia, pages 381–389. ACM,
2006. 2

[34] M. Pauly, N. J. Mitra, J. Giesen, M. H. Gross, and L. J.
Guibas. Example-based 3d scan completion. In Sym-
posium on Geometry Processing, number EPFL-CONF-
149337, pages 23–32, 2005. 2

[35] M. Pauly, N. J. Mitra, J. Wallner, H. Pottmann, and L. J.
Guibas. Discovering structural regularity in 3d geometry.
ACM transactions on graphics (TOG), 27(3):43, 2008. 2

[36] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz,
and T. Funkhouser. A planar-reflective symmetry trans-
form for 3d shapes. ACM Transactions on Graphics (TOG),
25(3):549–559, 2006. 2

[37] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation.
Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 1(2):4, 2017. 2, 3, 14

[38] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hi-
erarchical feature learning on point sets in a metric space. In
Advances in Neural Information Processing Systems, pages
5105–5114, 2017. 2, 5, 6, 12

[39] J. Rock, T. Gupta, J. Thorsen, J. Gwak, D. Shin, and
D. Hoiem. Completing 3d object shape from one depth im-
age. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2484–2493, 2015. 2

[40] R. B. Rusu and S. Cousins. 3d is here: Point cloud library
(pcl). In Robotics and automation (ICRA), 2011 IEEE Inter-
national Conference on, pages 1–4. IEEE, 2011. 7

[41] K. Sarkar, K. Varanasi, and D. Stricker. Learning quadrangu-
lated patches for 3d shape parameterization and completion.
arXiv preprint arXiv:1709.06868, 2017. 2

[42] R. Schnabel, P. Degener, and R. Klein. Completion and re-
construction with primitive shapes. In Computer Graphics
Forum, volume 28, pages 503–512. Wiley Online Library,
2009. 2

[43] T. Shao, W. Xu, K. Zhou, J. Wang, D. Li, and B. Guo. An
interactive approach to semantic modeling of indoor scenes
with an rgbd camera. ACM Transactions on Graphics (TOG),
31(6):136, 2012. 2

[44] A. Sharma, O. Grau, and M. Fritz. Vconv-dae: Deep vol-
umetric shape learning without object labels. In European
Conference on Computer Vision, pages 236–250. Springer,
2016. 2

[45] C.-H. Shen, H. Fu, K. Chen, and S.-M. Hu. Structure re-
covery by part assembly. ACM Transactions on Graphics
(TOG), 31(6):180, 2012. 2

[46] I. Sipiran, R. Gregor, and T. Schreck. Approximate symme-
try detection in partial 3d meshes. In Computer Graphics

Forum, volume 33, pages 131–140. Wiley Online Library,
2014. 2

[47] E. Smith and D. Meger. Improved adversarial systems for
3d object generation and reconstruction. arXiv preprint
arXiv:1707.09557, 2017. 2

[48] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and
T. Funkhouser. Semantic scene completion from a single
depth image. In Computer Vision and Pattern Recognition
(CVPR), 2017 IEEE Conference on, pages 190–198. IEEE,
2017. 1

[49] O. Sorkine and D. Cohen-Or. Least-squares meshes. In
Shape Modeling Applications, 2004. Proceedings, pages
191–199. IEEE, 2004. 2

[50] D. Stutz and A. Geiger. Learning 3d shape completion from
laser scan data with weak supervision. 2

[51] H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M.-H.
Yang, and J. Kautz. Splatnet: Sparse lattice networks for
point cloud processing. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
2530–2539, 2018. 2

[52] M. Sung, V. G. Kim, R. Angst, and L. Guibas. Data-driven
structural priors for shape completion. ACM Transactions on
Graphics (TOG), 34(6):175, 2015. 2, 5

[53] M. Tatarchenko, J. Park, V. Koltun, and Q.-Y. Zhou. Tan-
gent convolutions for dense prediction in 3d. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3887–3896, 2018. 2

[54] D. Thanh Nguyen, B.-S. Hua, K. Tran, Q.-H. Pham, and S.-
K. Yeung. A field model for repairing 3d shapes. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5676–5684, 2016. 2

[55] S. Thrun and B. Wegbreit. Shape from symmetry. In Com-
puter Vision, 2005. ICCV 2005. Tenth IEEE International
Conference on, volume 2, pages 1824–1831. IEEE, 2005. 2

[56] J. Varley, C. DeChant, A. Richardson, J. Ruales, and P. Allen.
Shape completion enabled robotic grasping. In Intelligent
Robots and Systems (IROS), 2017 IEEE/RSJ International
Conference on, pages 2442–2447. IEEE, 2017. 2

[57] S. Wang, S. Suo, W.-C. M. A. Pokrovsky, and R. Urtasun.
Deep parametric continuous convolutional neural networks.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2589–2597, 2018. 2

[58] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and
J. M. Solomon. Dynamic graph cnn for learning on point
clouds. arXiv preprint arXiv:1801.07829, 2018. 2

[59] B. Yang, S. Rosa, A. Markham, N. Trigoni, and H. Wen. 3d
object dense reconstruction from a single depth view. arXiv
preprint arXiv:1802.00411, 2018. 2

[60] Y. Yang, C. Feng, Y. Shen, and D. Tian. Foldingnet: In-
terpretable unsupervised learning on 3d point clouds. arXiv
preprint arXiv:1712.07262, 2017. 2, 3, 5, 6, 12

[61] K. Yin, H. Huang, H. Zhang, M. Gong, D. Cohen-Or, and
B. Chen. Morfit: interactive surface reconstruction from in-
complete point clouds with curve-driven topology and geom-
etry control. ACM Trans. Graph., 33(6):202–1, 2014. 2

[62] W. Zhao, S. Gao, and H. Lin. A robust hole-filling algorithm
for triangular mesh. The Visual Computer, 23(12):987–997,
2007. 2

11

A. Overview
In this document we provide technical details and addi-

tional quantitative and qualitative results to the main paper.
In Section B, we describe the local folding operation in

detail. Section C provides specific parameters for the mod-
els compared in Section 5.2. Section D and E present more
results on ShapeNet and KITTI, including failure cases.
Section F provides further analysis on the network design.
Section G shows more visualization results.

B. Local Folding Operation
Here we describe the local folding operation mentioned

in Section 4.2 in detail. As shown in Figure 10, the folding
operation takes a point qi in the coarse output Ycoarse and
the k-dimensional global feature v as inputs, and generates
a patch of t = u2 points in local coordinates centered at qi
by deforming a u × u grid. It first takes points on a zero-
centered u × u grid with side length r (r controls the scale
of the output patch) and organize their coordinates into a
t × 2 matrix G. Then, it concatenates each row of G with
the coordinates of the center point qi and the global feature
vector v, and passes the resulting matrix through a shared
MLP that generates a t × 3 matrix Q, i.e. the local patch
centered at qi. This shared MLP can be interpreted as a non-
linear transformation that deforms the 2D grid into a smooth
2D manifold in 3D space. Note that the same MLP is used
in the local patch generation for each qi so the number of
parameters in the local folding operation does not grow with
the output size.

Figure 10: The folding operation

C. Network Architecture Details
Here we describe the detailed architecture of the mod-

els compared in Section 5.2. The 3D-EPN model we used
is 3D-EPN-unet-class, the best performing model from [9].
For the seen categories, we use the 1283 output which in-
volves an additional database retrieval step. For the unseen
categories, we use the original 323 output from the model.

The stacked PN encoder used by FC, Folding, PCN-CD
and PCN-EMD includes 2 PN layers. The shared MLP in
the first PN layer has 2 layers with 128 and 256 units. The
shared MLP in the second PN layer has 2 layers with 512
and 1024 units. The PN2 encoder follows the same archi-
tecture as the SSG network in [38].

The FC decoder contains 3 fully-connected layers with
1024, 1024 and 16384 · 3 units. The Folding decoder con-
tains 2 folding layers as in [60], where the second layer
takes the output of the first layer instead of a 2D grid. Note
that these folding layers are different from the one described
in Section B in that they do not take the center point coordi-
nates as input. Each folding layer has a 3-layer shared MLP
with 512, 512 and 3 units. The grid size is u = 128 and the
grid scale is r = 0.5.

The multistage decoder in PCN-CD and PCN-EMD has
3 fully-connected layers with 1024, 1024 and 1024 ·3 units,
followed by 1 folding layer as described in Section B, where
the grid size is u = 4 and the grid scale is r = 0.05. The
folding layer contains a 3-layer shared MLP with 512, 512
and 3 units.

D. Additional Results on ShapeNet
Table 4, 5, 6 and 7 show the quantitative results on test

instances from ShapeNet corresponding to Figure 3 in the
main paper. Figure 9 shows the qualitative comparisons on
shapes from seen as well as unseen categories. As can be
seen, the outputs of 3D-EPN often contain missing or ex-
tra parts. The outputs of FC are accurate but the points are
overly concentrated in certain regions. The outputs of Fold-
ing contain many floating points and the outputs of PN2 are
blurry. The outputs of our model best match the ground
truth in terms of global geometry and local point density.

E. Additional Results on KITTI
Figure 11 shows the distribution of fidelity error and

minimal matching distance on the completion results on
KITTI. It can be seen that there are a few failure cases with
very high error that can bias the mean value reported in Sec-
tion 5.3. Figure 12 shows some qualitative examples. We
observe that in most cases, our model produces a valid car
shape that matches the input while being different from the
matched model in ShapeNet, as the one shown in the top
figure. However, we also observe some failure cases, e.g.
the one shown in the bottom figure, caused by extra points
from the ground or nearby objects that are within the car’s
bounding box. This problem can potentially be resolved by
adding a segmentation step before passing the partial point
cloud to PCN.

F. More Architecture Analysis
Effect of stacked PN layers Here we test variants of
PCN-CD with different number of stacked PN layers in the
encoder. The mean CD and EMD on the ShapeNet test set
are shown in Figure 13. It can be seen that the advantage of
using 2 stacked PN layers over 1 is quite apparent, whereas
the benefit of using more stacked PN layers is almost neg-
ligible. This shows that 2 stacked PN layers are sufficient
for mixing the local and global geometry information in the

12

Figure 11: Distribution of fidelity error and minimal matching distance on KITTI car completions

Figure 12: Completion (middle) and matched model
(right) for cars in KITTI (left). The matched model on
the right is the car point cloud from ShapeNet that is closest
to the completion output in Chamfer Distance. Top figure
shows a successful completion and bottom figure shows a
failure case caused by incorrect segmentation.

input. Thus, we keep the number of stacked PN layers as 2
in our experiments, even though PCN’s performance can be
further improved by using more stacked PN layers.

Effect of bottleneck size Here we test variants of PCN-
EMD with different bottleneck size, i.e. the length of the
global feature vector v. The mean CD and EMD on the
ShapeNet test set are shown in Figure 14. It can be seen
that PCN’s performance improves as the bottleneck size in-
creases. In our experiments, we choose the bottleneck size
to be 1024 because a larger bottleneck of size 2048 can-
not fit into the memory of a single GPU. This implies that
if multiple GPUs are used for training, PCN’s performance
can further improve with a larger bottleneck.

Figure 13: Test error with different number of PN layers

Figure 14: Test error with different bottleneck sizes

13

G. More Visualizations
Keypoint Visualization As noted in [37], the PN layer
can be interpreted as selecting a set of keypoints which de-
scribes the shape. More specifically, each output unit of the
shared MLP can be considered as a function on the points.
The keypoints are points that achieve the maximum value
for at least one of these point functions. In other words,
they are points whose feature values are “selected” by the
maxpooling operation to be in the final feature vector. Note
that a point can be selected more than once by achieving
the maximum for multiple feature functions. In fact, as
shown in Table 3, the number of keypoints is usually far
less than the bottleneck size (1024) or the number of input
points. This implies that as long as these keypoints are pre-
served, the learned features won’t change. This property
contributes to our model’s robustness against noise.

In Figure 15, we visualize the keypoints selected by the
two PN layers in our stacked PN encoder. It can be observed
that the two PN layers summarizes the shape in a coarse-
to-fine fashion – the first layer selects just a few points that
compose the outline of the shape, while the second layer se-
lect more points that further delineate the visible surfaces.
Note that this coarse-to-fine description emerges without
any explicit supervision.

Average number of points

Input 1105
Keypoints (1st PN layer) 101
Keypoints (2nd PN layer) 363

Table 3: Number of keypoints versus number of input points

Figure 15: Keypoints visualization

Feature Space Visualization In Figure 17, we use t-SNE
[27] to embed the 1024-dimensional global features of the
ShapeNet test instances into a 2D space. It can be seen that
shapes are clustered together by their semantic categories.
Note that this is also an emerging behavior without any su-
pervision, since we do not use the category labels at all dur-
ing training.

14

Figure 16: Qualitative completion results on KITTI

15

Figure 17: T-SNE embedding of learned features on partial point clouds

16

Table 4: Seen categories of ShapeNet dataset - Chamfer Distance

Method Mean Chamfer Distance per point

Avg Airplane Cabinet Car Chair Lamp Sofa Table Vessel

3D-EPN 0.020147 0.013161 0.021803 0.020306 0.018813 0.025746 0.021089 0.021716 0.018543
FC 0.009799 0.005698 0.011023 0.008775 0.010969 0.011131 0.011756 0.009320 0.009720
Folding 0.010074 0.005965 0.010831 0.009272 0.011245 0.012172 0.011630 0.009453 0.010027
PN2 0.013999 0.010300 0.014735 0.012187 0.015775 0.017615 0.016183 0.011676 0.013521
PCN-CD 0.009636 0.005502 0.010625 0.008696 0.010998 0.011339 0.011676 0.008590 0.009665
PCN-EMD 0.010021 0.005849 0.010685 0.009080 0.011580 0.011961 0.012206 0.009014 0.009789

Table 5: Seen categories of ShapeNet dataset - Earth Mover’s Distance

Method Mean Earth Mover’s Distance per point

Avg Airplane Cabinet Car Chair Lamp Sofa Table Vessel

3D-EPN 0.081785 0.061960 0.077630 0.087044 0.076802 0.107317 0.080802 0.080996 0.081732
FC 0.171280 0.073556 0.214723 0.157297 0.189727 0.240547 0.191488 0.161117 0.141782
Folding 0.228015 0.156438 0.221349 0.174567 0.297427 0.319983 0.245664 0.189904 0.218788
PN2 0.101445 0.059574 0.116179 0.066942 0.110595 0.185817 0.102642 0.086053 0.083755
PCN-CD 0.087142 0.046637 0.097691 0.057178 0.086787 0.169540 0.083425 0.080783 0.075094
PCN-EMD 0.064044 0.038752 0.070729 0.054967 0.068074 0.084613 0.072437 0.060069 0.062713

Table 6: Unseen categories of ShapeNet dataset - Chamfer Distance

Method Mean Chamfer Distance per point

Avg Bus Bed Bookshelf Bench Avg Guitar Motorbike Skateboard Pistol

3D-EPN 0.0415 0.03594 0.04785 0.03912 0.04307 0.0443 0.04735 0.04067 0.04784 0.04136
FC 0.0142 0.00982 0.02123 0.01512 0.01081 0.0129 0.00992 0.01456 0.01200 0.01497
Folding 0.0138 0.01058 0.01908 0.01488 0.01055 0.0124 0.00906 0.01556 0.01191 0.01313
PN2 0.0169 0.01260 0.02378 0.01687 0.01445 0.0168 0.01429 0.01635 0.01290 0.02353
PCN-CD 0.0142 0.00946 0.02163 0.01479 0.01102 0.0129 0.01040 0.01475 0.01204 0.01423
PCN-EMD 0.0146 0.00972 0.02236 0.01496 0.01139 0.0131 0.01147 0.01525 0.01211 0.01359

Table 7: Unseen categories of ShapeNet dataset - Earth Mover’s Distance

Method Mean Earth Mover’s Distance per point

Avg Bus Bed Bookshelf Bench Avg Guitar Motorbike Skateboard Pistol

3D-EPN 0.1189 0.10681 0.13318 0.11856 0.11711 0.1309 0.16255 0.11893 0.11328 0.12873
FC 0.1998 0.16686 0.25567 0.20619 0.17050 0.1790 0.17635 0.18132 0.16706 0.19134
Folding 0.2494 0.22150 0.32603 0.22555 0.22457 0.2733 0.32040 0.25137 0.25435 0.26689
PN2 0.1062 0.08081 0.14900 0.12155 0.07349 0.1270 0.17836 0.10372 0.08825 0.13749
PCN-CD 0.0908 0.06270 0.13556 0.10332 0.06161 0.1130 0.16834 0.09206 0.08464 0.10702
PCN-EMD 0.0705 0.05991 0.10350 0.07607 0.06044 0.0816 0.07478 0.09471 0.06249 0.09426

17

