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Introduction 
To optimize our transportation network through a detailed analysis of all the traffic flows one 
needs to have two main ingredients. First it is necessary to have a holistic modeling framework 
that can manage the complexity of this multi-modal system. Second is comprehensive data for all 
the traffic statistics. In this project we want to demonstrate with an example how parking 
information can be incorporated into a multi-modal dynamic user equilibrium (MMDUE) model 
and develop a computer vision tool that can provide street parking data. The details of the 
MMDUE can be found in the paper [1], in this report we only describe the example.  

Multimodal Network 
 

 
Figure 1 (a) A simplified multi-modal network for downtown and southern Pittsburgh region used in the experiments. 
Note the bus line represents the aggregation of all high-frequency bus routes in this area. Nodes and links are labeled on 
the figure. (b) The real network map. Origins 1 to 5 are all large residential zones. Downtown (D1) is the only destination. 

 
The multi-modal dynamic user equilibrium (MMDUE) model is tested in the network shown in 
Figure 1. The network is an abstraction of the real multi-modal network in the Pittsburgh region, 
covering the district of Upper St Clair, Bridgeville, Mt Lebanon, Scott Township, Carnegie, Green 
Tree, Banksville, Mt Washington and Downtown Pittsburgh, with I-79, I-376, US Route 19 and a 
light rail Red Line connecting the suburbs and the downtown, see Figure 1(b). The simplified 
network is shown in Figure 1(a), with five origins O1 – O5, one destination D1, nine nodes 
(junctions), 16 links (road segments), three parking areas, one bus route, and one railway line. The 
parking area can be viewed as the aggregation of all parking space in that area, and we only 
considered one bus route that represents the aggregation of all high-frequency routes and one 
railway line. We also assume all travelers own or have access to a private car, which means. This 
allows all travelers to choose any travel modes in this experiment. 



 
We have made efforts on calibrating the traffic flows and OD demand in the Pittsburgh 
metropolitan area in a separate project [2][3][4], so the OD demands were employed in this study. 
The total passenger demand is set as 30,000 for the morning peak hours (5 AM to 9 AM) in this 
area, from all origins O1 – O5 to the only destination D1. Note origins O1 – O5 are all large residential 
districts, and the only destination D1 is downtown Pittsburgh. All link parameters are listed in Table 
1 and all modes and paths are listed in Table 2. O2 is the bus origin and only for releasing buses to 
the network. O5 is the truck origin and only for releasing trucks to the network. All other 
parameters used in the experiment are listed in   



Table 3. 
 
Table 1 Link parameters. uF: free-flow speed, qc: lane capacity, ρJ : jam density. Subscript 1: passenger cars, 2: buses and 
trucks. 

 
 
Table 2 All modes and paths in the numerical experiment. 

 
 
  



Table 3 All other model parameters 

 
 

Convergence 
We solve the MMDUE with the solution framework presented in [SEAN-REFERENCE SECTION]. 
Changes in the equilibrium gap against the number of iterations using our proposed solution and 
quadratic solver are presented in Figure 2. All the experiments below are conducted on a desktop 
with Intel Core i7-6700K CPU @ 4.00GHz x 8, 2133 MHz 2 x 16GB RAM, 500GB SSD. We run our 
algorithm for 100 iterations, and the proposed method outperforms the quadratic optimization 
method in terms of the equilibrium gap. It takes the proposed method 211s to complete 100 
iterations, comparing to the 227s taken by the quadratic solver. 
 

 
Figure 2 Convergence curves for both gradient projection methods. 

 

Solution of network flow and mode choices 
 
The path choice probability over the morning peak for OD pair (1, 1) and OD pair (3, 1) is 
presented in Figure 3. For OD pair (1,1), most travelers departing in 5 AM-6 AM choose carpool 
and railway to commute, and more travelers select park-and-ride (PnR) after 7 AM. The 
generalized cost of metro is relatively low, as a result of low railway fare. After 8 AM, taking 
railway will incur a high late arrival cost penalty, so the path flow of railway decreases 
dramatically. Using carpool directly to CBD is another preferred choice before 8 AM since the 
roads to CBD are not congested yet. After 8 AM, cruising time for parking in the CBD area 
increases, leading to a decline in the carpool probability. In contrast, the generalized park-and-ride 
cost is low when the CBD is congested because of the savings on travel time and parking fee. 
Hence park-and-ride mode becomes the most preferable choice after 8 AM. At 7 AM, the flow of 
paths 7 and 8 has a spike, possibly due to the unstable UE solution when the cost of path 7 and 8 
coincide. The stability of MMDUE can be improved in future research by the method proposed by 
[5][6]. Similar choice patterns can be observed for OD pair (3,1). One observation is that there are 
few travelers choosing solo-driving all the way to downtown, which is probably attributed to the 
high parking fee in the downtown, relatively low inconvenience cost for carpool, and the way 
transit and park-and-ride are provided in this experiment. 
 



 
Figure 3 Time-varying path choice for OD pair (1,1) and (3,1). 

 
 

Sensitivity analysis on total demand level 
We change the total demand from 75% to 125% of the O-D demand in the original problem 
settings, keeping other parameters the same. We solve the MMDUE under different demand 
levels and plot the average user cost for different modes and the route choice for OD pair (1,1) in 
Figure 4. 
 

 
Figure 4 The influence of total demand on average cost per traveler and the path choice for OD pair (1,1). 

It shows clearly the average passenger cost increases with respect to the demand level, and the 
influence of demand level to the average cost is approximately linear.  The cost of driving 
passengers and park-and-ride passengers increase since the network become over-saturated, 
while the cost of transit passengers almost remain the same, because of constant railway cost. 
Also, the increasing demand will generally force travelers to avoid driving in routes with high 
congestion levels. Hence for OD (1,1), the park-and-ride flow drops on Path 8 and increases on 
Path 7, as a result of more and more congested highways/freeways. Figure 4 can be used to 
determine the marginal travel time/cost at different demand levels, which supports the urban 
planning for policymakers. 
 

Sensitivity analysis on parking and bus fare 
We study the joint influence of bus fare and parking fare. We change the bus fare and parking fare 
by applying a multiplier to the fare in the original settings, which ranges from 1 to 5. We solve the 
MMDUE under different bus and parking fares, and plot the average cost for all travelers, driving 



travelers, transit travelers and park-and-ride travelers in Figure 5. 
 

 
Figure 5 Heatmap of average cost for total traffic and different modes. 

When the bus fare increases, the average traffic cost and average park-and-ride cost increase. This 
is because the park-and-ride cost includes bus fare and park-and-ride is one of the most preferred 
modes for all travelers. When the parking fare increases, the average costs of driving and park-
and-ride increase substantially, because in both modes the travelers need to pay for the parking 
fee. In this case, the average traffic cost also increases. One interesting observation is that the 
average transit cost is relatively stable, which implies that transit cost has little change when bus 
fare and parking fare is changing. One important reason is that transit passengers do not pay the 
parking fare, and another reason is that many transit passengers can switch from bus to railway. 
Travel cost incurred on the railway model does not change as much regardless of parking or bus 
fare. 
 

Influence of inconvenience (impedance) cost 
In the original settings, the inconvenience (impedance) costs for carpool, transit, and park-and-
ride are assumed to be at a very low level for testing the MMDUE model and the algorithm. As a 
result, the driving flow is marginal in the MMDUE solutions, which is deviated from the real 
situation in the study area. In this section, we will explore the impact of inconvenience cost on 
travelers' mode choice. We set the inconvenience costs for carpool, transit, and park-and-ride to 
be $5 under MMDUE. The path choice probability over the morning peak for OD pairs (3, 1) and (4, 
1) is presented in Figure 6. Generally, more travelers in O3 and O4 choose solo-driving before 7 AM, 
due to higher (inconvenience) costs for transit/park-and-ride. To conclude, the inconvenience 
costs has a considerable impact on travelers' mode choice. Therefore, public transit with great 
accessibility effectively attracts travelers. In future studies, a more fine-grained model should be 
developed to estimate the values of inconvenience costs, for example, there should be different 
inconvenience costs for groups of travelers with different demographic or traveling characteristics. 
This kind of further study is going to be significant in improving the accuracy of MMDUE. 
 



 
Figure 6 Time-varying path choice for OD pairs (3,1) and (4, 1) with high inconvenience costs. 

 
 

Parked cars detection 
 
As can be seen from the discussions above parking statistics are an important input to traffic 
models. Such statistics are readily available for parking garages but are harder to come by for on-
road parking. Since cameras are widespread, we want to investigate if videos taken from vehicles 
can be analyzed to count parked cars.  
Car detection itself is now a standard tool. Neural nets like Faster-RCNN (Figure 7) have been 
trained with large data sets and the resulting models and software are freely available [7]. 

 
Figure 7 Architecture of Faster-RCNN. 

We first tested if the faster-rcnn could distinguish between parked and moving cars, taking cues 
like distance to curb or proximity to other cars. We labeled a data set with the two classes “moving 
vehicle” and “parked vehicle” and trained the network with only these two classes. It turned out 
not to be very accurate. Therefore, we extended the classifier to not only take the RGB into 
account, but also optical flow. For each WxHx3 RGB image we create an optical flow volume (OFV) 
of the same size from a sequence of images (Figure 8). 
 



 
Figure 8 Construction of Optical Flow Volume. 

In Figure 9 is an example of an RGB image and one corresponding optical flow layer. 
 

 
Figure 9 RGB image and corresponding optical flow image. 

We modified the Faster-RCNN architecture to incorporate the OFV. The OFV goes through a 
parallel but otherwise identical backbone (Figure 10). The output from the RGB backbone is fed 
into the RPN as before. The outputs from both backbones are combined and used for the 
classification step.   

 
Figure 10 Modified Faster-RCNN architecture to incorporate the optical flow volume. 

To train this new parallel network we used 3000 RGB-OFV pairs. The pre-trained weighs of the 
original backbone and RPN are frozen, whereas the OFV backbone is trained from scratch. We 
trained again for the two classes, “moving vehicle” and “parked vehicle”. The resulting precision-
recall curves are shown in Figure 11. 
 



 
Figure 11 Precision-Recall curve for moving and parked cars. 

The corresponding average precision (AP) are: Moving_car AP = 0.87 and Parked_car AP = 0.73. 
Figure 12 shows correct, false, and missed detections. Also shown are cases where the vehicles are 
parked on the edge of the road and off the road. Depending on the application, it is also desirable 
to distinguish between these two classes.  

 

 
Figure 12 Examples of moving (green) and parked (red) vehicle detection. In the left image are two parked vehicles that 
are mis-classified as moving and some others in the background that are not classified at all. On the right side one can 

see many vehicles that are parked off the road. 

 
To visualize the results on a map we created kml files that can be displayed on GoogleTM Maps 
(Figure 13). 
 

 
Figure 13 Visualization of detection results: On the right cutouts of the detected vehicles are placed on a map. By click 

with the mouse opens the original image with a box overlaid indicating the detected vehicle and car ID.  



 

Tracking 
The individual parked or moving vehicles appear in many frames of the videos. Tracking the 
vehicles through all the frames they appear in will make the detection much more robust. Outlier 
classifications can be rejected as they are inconsistent with the detection in other frames. 
Furthermore, we want to count the individual vehicles only once and not recount them in each 
frame they appear.  
Originally we used a naïve matching algorithm to associate detections frame-by-frame using 
intersection-over-union (IoU) as our only metric. This method only works well enough for dense 
detections and high frame rates. In actuality, detections are noisy, with many false negatives and 
false positives. Upon visual inspection, we can see that this often causes ID switches and 
fragmentations (Figure 14). 
 

             
Figure 14 Examples of an ID switch due to missing detections and small IoU (Left to right, 27 -> 28 -> 29) 

 
Due to increasing capabilities of object detection networks, tracking-by-detection has become the 
mainstream method for Multiple-Object-Tracking (MOT). Instead of the naive tracking we 
therefore use the DeepSORT [8] algorithm which incorporates a motion model along with an 
appearance model to perform tracking. The motion model uses a Kalman filter with a constant 
velocity motion assumption to find IoU of detections over frames. The appearance model uses a 
lightweight feature extractor (residual network, 9 layers, trained on large-scale person re-
identification dataset) to extract embeddings, and calculates the cosine distance in feature space 
across embeddings. 
 

            
Figure 15 DeepSORT results, no ID switch (Left to right, 36 -> 36 -> 36) 

 
A weighted sum of these two metrics is then added and used for Hungarian matching: 
 

𝑐𝑖,𝑗 = 𝜆𝑑(1)(𝑖, 𝑗)  + (1 − 𝜆)𝑑(2)(𝑖, 𝑗) 

 

 𝑐𝑖,𝑗 denotes the weighted (weight 𝜆) sum of distances 𝑑(1) and 𝑑(2) between detection i and j. The 



motion model accounts well for short-term scenes with little movements, while the appearance 
model accounts for long-term tracking by taking occlusions and large shifts in appearance into 
consideration. 
 
DeepSORT performs significantly better than the naive method. It uses heuristics for 
adding/deleting tracks, namely, a track must be accurately detected for at least three frames 
before being considered a valid track, and tracks that have not been observed for a maximum time 
are deleted. A threshold is also used to gate metrics. 
 
To handle occasional missed detections or occlusions, a “matching cascade” is implemented: 

 
 
Tracks are matched by age, and newer detections are given more priority. Detections which have 
not been associated are then passed to the next matching iteration. 
 
Below we show some failure cases (Figure 16 and Figure 17), mainly ID switches. This can occur for 
a number of reasons: 

(1) There are false negatives (missed detections), causing matching failures, which in turn 
create new tracks. 

(2) Camera motion results in tracks overlapping with each other. 
(3) Appearance model cannot distinguish well enough between cars of similar build. 

 

 
Figure 16 Overlapping detections, creating two tracks of same object. 



 

Figure 17 ID switch due to missing detections in between (Left to right, 47 -> 50) 

Training on three classes 
We seek to robustly count parked vehicles from simple camera feed, to aid with traffic and parking 
analysis. To this objective, we initially train an object detector with two classes (moving/parked). 
Often we encounter occurrences of parked cars in other areas besides the road, like parking lots of 
a car dealership or off-road parking for a shopping center. Depending on the application, these 
parked cars might not be of interest. E.g. if one wants to study the compliance to roadside parking 
restrictions during rush hours, the off-road parking is not relevant.  
 
We thus extend our detector by another class, namely, “parked cars/side” with following 
detection performances: 
 
Moving_car AP : 0.88 
Parked_car AP : 0.68 
Side_car AP : 0.66 
mAP : (0.88 + 0.68 + 0.66) / 3 = 0.74 
 
As is expected when the number of classes are increased, the AP of some classes decrease. With 
two classes Parked_car AP was 0.73 (see earlier section). Overall the performance is still good.  

 
Figure 18 Precision-Recall Curve after training with 3 classes. 

Though the detector does have some errors distinguishing between the three classes, we find that 



after running DeepSORT on these detections, that noisy detections are filtered out, and tracks that 
are detected for a majority of the time remain. This aligns with the goal of our specific application, 
where we want to count the vehicles parked on the side of the road. Figure 19 shows many 
successfully tracked cars. Moving cars and cars parked on the left or right side of the roads are 
counted, while vehicles in adjacent parking lots are ignored.  
 

 
Figure 19 The two images show detection and tracking of moving (green) and parked cars (red). Only cars parked on the 

road are counted, vehicles in a parking lot on the side are ignored. The boxes around the cars show their ID, the total 
number of detected and tracked cars are shown in the upper left corner.  

 

Evaluation Results 
In order to quantitatively evaluate the performance of our system we analyzed 60 seconds of a 
video, focusing on parked cars. The following table lists the experimental details: 
 

Evaluation Video Details 

Video duration 60 seconds 

No. of frames 703 

Location W Liberty Ave 

Distance traveled 341 m 

No. of vehicles 16 

 
The MOT was evaluated with the metrics from [9] and the results are listed in following table: 
 

MOT Evaluation Results 

IDF1 : 95.3% ID F1 Score. The ratio of correctly identified detections over the 
average number of ground-truth and computed detections. 

IDP : 97.5% ID measures: global min-cost precision. 

IDR : 93.2% ID measures: global min-cost recall. 



Recall : 94.4% Number of detections over number of objects. 

Precision : 98.8% Number of detected objects over sum of detected and false 
positives. 

GT : 16 Number of ground truth tracks 

MT : 9 Mostly tracked targets. The ratio of ground-truth trajectories 
that are covered by a track hypothesis for at least 80% of their 
respective life span. 

PT : 5 Number of objects tracked between 20 and 80 percent of 
lifespan. 

ML: 2 Mostly lost targets. The ratio of ground-truth trajectories that 
are covered by a track hypothesis for at most 20% of their 
respective life span. 

FP : 20 The total number of false positives. 

FN : 95 The total number of false negatives (missed targets). 

IDs : 5 The total number of identity switches. 

FM : 9 The total number of times a trajectory is fragmented (i.e. 
interrupted during tracking). 

MOTA : 92.9% Multiple Object Tracking Accuracy. This measure combines 
three error sources: false positives, missed targets and identity 
switches. 

MOTP : 93.7% Multiple Object Tracking Precision. The misalignment between 
the annotated and the predicted bounding boxes. 

 

Conclusion and future work 
This project allows us to collect time-varying parking data that could be used, in addition to 
existing traffic data, to understand travel behavior among various travel modes, such as driving 
(including solo-driving and carpooling), public transit, and park-and-ride. The travel behavior of all 
travelers in the network is then simulated to assess system performance and features of 
passenger/vehicular flow. The results are used to assess policies and operational strategies that 
target congestion reduction. Those policies and strategies are integrated into the behavioral 
model and simulation to estimate how passenger/vehicular flow would change comparing to the 
baseline, so that we can deploy the right policies and strategies to ensure their efficiency in 
reducing congestion. As one example, we found that when changing the parking prices from $1 to 
$5 per trip in downtown Pittsburgh, the use of public transportation increases by 11% and the 
vehicular traffic decreases by 7%. 
With the development of the parked car counter we are now able to measure street parking and 
include it in the model. The overall performance of the parked car counter of MOTA = 92.9% is 
very good.  



In the near future we want to apply the parked and moving car counter on videos recorded from 
transit buses. These transit buses regularly travel their routes and we will therefore be able to 
obtain traffic statistics with high temporal resolution. 
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