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Introduction 
State and local maintenance departments are tasked with keeping roads in good repair. One part of this 

task is to monitor the degradation of road surfaces, which manifests itself with the presence of cracks, 

potholes, and other distress. 

Currently, this is done by (Figure 1): (i) inspectors who visually judge the road condition, (ii) specialized 

vehicles which measure the distress with cameras1,3 or laser devices2,4, or (iii) citizens who call in their 

observations. The first method is tedious and often inconsistent if several inspectors do the inspections. 

The second method does not have these problems, but it is generally expensive. The cost can range 

between $40 and $230 per mile3. Because of budget constraints one stretch of road is usually only 

traversed by the specialized vehicle once every two years. This method is effective for interstates and 

highways, but it is not practical for the inner roads in a city. As for the third method, reports by citizens 

are generally only about severe problems, like large potholes on main roads. Each of the three methods 

has its strength, but none of them is able to monitor the road on a continuous basis at low cost with 

minimal human intervention. 

 
Figure 1 Methods of road inspection: Camera based3 (left) and laser based4 (middle) specialized vehicles, hotline (right top) 
and road inspector (right bottom). 

The approach of the road inspection system developed in this project is to use images or videos 

collected by commodity devices such as smartphones. The devices are mounted in vehicle that travels 

the roads for other purposes and therefore no dedicated vehicles or drivers are needed. The captured 

                                                           
1 http://www.pavemetrics.com/ 
2 http://www.greenwood.dk/profiler.php, http://www.roadware.com/products/ARAN-Subsystems/ 
3 http://www.grbj.com/articles/76949-pavement-inspection-keeps-improving 
4 LCMS - Laser Crack Measurement System 



images are analyzed automatically with machine vision algorithms and the resulting distress scores are 

passed to the asset management system. 

Methodology 

Data collection 
The data collection system is shown in Figure 2. A smartphone is mounted on the windshield and is 

powered through the cigarette lighter. A device is plugged into the OBDII and sends out readings via 

Bluetooth. While the vehicle is driving the smartphone collects images or videos of the outside and tags 

them with time, GPS, accelerometer, gyro, speed from the OBDII and other selected information. The 

data is manually downloaded or transmitted to a central computer via Wi-Fi where it is analyzed.  

 
Figure 2 Smartphone mounted inside a vehicle. It is powered by the cigarette lighter. An OBDII-to-Bluetooth devise is 

installed under the dashboard.  

For the data collection we developed an app for Android phones. We implemented it on the Galaxy 

Camera. A screen snapshot of the app is shown in Figure 1. After starting the app the user only needs to 

tap on one button to start or stop the data collection. The user can also go to the settings menu and change 

the update rate, the resolution, or switch between collecting images or videos.  

 
Figure 3 Screen snapshot of the collection app. 

Furthermore, the user can download the images through Wifi and Dropbox by tabbing one button in the 

settings menu. We made the app open source. A simplified version without Dropbox and OBDII can be 

found at https://bitbucket.org/lwander/snowcam. The full version is at 

https://bitbucket.org/lwander/vehicle-state. 

https://bitbucket.org/lwander/snowcam
https://bitbucket.org/lwander/vehicle-state


  

One of the key ideas behind our data collection system is that it can be easily mounted on any vehicle. Of 

particular interest are vehicles that drive on the roads on a regular basis (Figure 4), e.g. garbage trucks 

drive through every neighborhood once a week. It is therefore possible to collect data frequently without 

the need for a dedicated vehicle or a dedicated driver.    

 
Figure 4 Examples of vehicles that drive on the road on a regular basis. 

 

Data display 
The collected data is already useful by itself to the road maintenance department without any further 

analysis. The GPS tagged images can be display in the asset management system of the department or 

with free software. An example is shown in Figure 5 where the data is displayed on Google Earth. One 

can see the satellite view of a neighborhood and small yellow and white arrows. The arrows point in the 

direction the vehicle was driving. If one clicks on one of the arrows, the corresponding image appears. 

This will allow the user to visually inspect the road from a computer instead of having to go out. With the 

slider on the top left the user can also choose the time window of interest if he or she likes to see how the 

road surfaces were in the past.  

 



 
Figure 5 Example of road image displayed on Google Earth. The small yellow and white arrows on the street are markers. 

When clicking on the marker the corresponding image appears. 

Data analysis 
The analysis of the images to determine the amount of damage of the road is an interesting and 

challenging computer vision problem. A paper5 describing the detailed methods was accepted for 

publication. Here we will present an outline. 

Automatic selection of good images 

The images are taken during different weather and lighting conditions. Some images also have blur 

caused by the movement and vibrations of the vehicle and exaggerated by the rolling shutter of the 

camera. Many of the roads are traversed many times by the test vehicle and therefore multiple images 

of the same road are in the data base. We automatically select the most favorable images. Since the 

images have time and GPS stamps, one can look up the weather conditions when the image was taken. 

It is best when it is overcast or cloudy. Precipitation creates unwanted artefacts in the image and 

sunshine results in shadows that can look like cracks or patches. The blur is measured6 and images with 

too much blur are discarded.   

Computer vision pipeline 

A typical image of the road that was captured from inside the car is shown in Figure 6. A significant part 

of the image is sky, buildings, and other objects that are not of interest to find the road distress. It is 

necessary to determine the part of the image that is road. 

                                                           
5 S. Varadharajan, S. Jose, K. Sharma, L. Wander, and C. Mertz, “Vision for Road Inspection” IEEE Winter 
Conference on Applications of Computer Vision, March 2014. 
6 F. Crete, T. Dolmiere, P. Ladret, and M. Nicolas. The blur effect: perception and estimation with a new no-
reference perceptual blur metric. Human vision and electronic imaging XII, 6492:64920I, 2007. 



 
Figure 6 A typical road image. 

An algorithm that finds geometric context7 is used to determine the ground plane in the image. The 

resulting segmentation into ground plane, objects, and sky can be seen in Figure 7. 

 

 
Figure 7 Image segmented into ground plane (green), objects (red) and sky (blue). 

It is advantageous to further segment the ground plane into so-called superpixels. These are patches with 

similar texture. A modified SLIC8 algorithm creates the superpixels shown in Figure 8. Notice how the 

regions with cracks are separated from the regions without cracks. 

 
Figure 8 The ground plane segmented into superpixels. 

                                                           
7 Hoiem, Derek, Alexei A. Efros, and Martial Hebert. "Geometric context from a single image." Computer Vision, 
2005. ICCV 2005. Tenth IEEE International Conference on. Vol. 1. IEEE, 2005. 
8 R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk. Slic superpixels compared to state-of-the-art 
superpixel methods. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(11):2274–2282, 2012. 



To classify the superpixels as cracked or non-cracked regions 138 different features are calculated: 

 
These are color and contrast (RGB, HSV, Hue, Saturation), spacial (x, y), and texture (texton and LBP) 

based features. The textons9 and LBP10 (linear binary pattern) features are illustrated in Figure 9. 

 

 
Figure 9 Illustration of textons (left) and linear binary patterns (right). 

Finally, a Support Vector Machine and Multiple Instance Learning11 are employed to classify the 

superpixels. The result can be seen in Figure 10. Patches with cracks are shown in red, the intensity of red 

indicates the severity of the cracks.  

                                                           
9 Jitendra Malik, Serge Belongie, Thomas Leung and Jianbo Shi, “Contour and Texture Analysis for Image 
Segmentation”. International Journal of Computer Vision, 43(1), 7-27, June 2001. 
10 Ojala, Timo, Matti Pietikainen, and Topi Maenpaa. "Multiresolution gray-scale and rotation invariant texture 
classification with local binary patterns." Pattern Analysis and Machine Intelligence, IEEE Transactions on 24.7 
(2002): 971-987. 
11 Andrews, Stuart, Ioannis Tsochantaridis, and Thomas Hofmann. "Support vector machines for multiple-instance 
learning." Advances in neural information processing systems. 2002. 



 
Figure 10 Classification result. The color indicates the severity of distress: blue = no cracks, red = cracks. 

Computation of distress score 

After classifying the superpixels in the image according to their crack content, it is now possible to 

calculate a distress score. The score is the ratio of the area with cracks and the total area in front of the 

vehicle (Figure 11). The area with cracks is also weighted with the severity. 

 

 
Figure 11 The area in front of the vehicle (outlined with a white line in the left image) is projected into a bird’s eye view 
(right). The distress score is the area with cracks (red) divided by the total area. In this case the distress score is 0.012. 

Further use of the data  
There are many more things that can be done with the data. To make better use of the many successive 

images they can be projected into bird’s-eye-view and stitched together. An example is shown in Figure 

12. We anticipate that the detection of cracks will be more efficient on such an image. It is also easier 

for an user to judge the amount of cracks. 



 
Figure 12 A bird's-eye-view of a road stitched together from about 60 images. 

Results 
We have mounted the system on a personal vehicle and collected data for over a year. The routes included 

daily commutes and other typical day-to-day driving. Figure 13 shows the data overlaid on a satellite view 

of Pittsburgh.  

 

 
Figure 13 The data collected in over one year (yellow) overlaid on a satellite view of Pittsburgh, PA. 

This is about 1200 hours of driving on 500 miles of unique roads. The distress score for a subset of the 

data is shown in Figure 14 overlaid on the GIS street center lines used by the city of Pittsburgh.     



 
 

Figure 14 Distress score overlaid on a GSI street map of Pittsburgh. Light red is little or no cracks and dark red is lots of 
cracks. A click on a point brings up the corresponding image and other information about the road. 

We compared the performance of our system with that of human inspection. We had several people12 

label the cracked regions of images and we compared their performance to each other and to our system. 

The overall performance is depicted in Figure 15.  

 
Figure 15 Crack detection performances of humans and our classifier. Higher recall or precision means better performance. 

With such a comparison it is not possible for a classifier to be better than the human performance. The 

goal is to come close to the human performance. As can be seen in Figure 15, we achieved this goal. 

                                                           
12 For this task we used Amazon Mechanical Turk. 



Conclusion and Outlook 
We have shown that it is possible to build a road distress monitoring system that can evaluate the 

surface quality of roads on a regular basis, close to human performance and at very low cost . The 

equipment can be purchased for less than $1000, the labor required is small, and the analysis can be 

done on a standard computer.  

Having completed the development of a prototype system, we are in the process of testing it in a pilot 

project with the City of Pittsburgh. We will mount the data collection system on their vehicles, analyze 

the collected data and load the results into their asset management system.  First indications are that 

the system will be very useful for them.  

Further into the future we want to expand it into an all-purpose infrastructure inventory and monitoring 

system. We want it to be able to detect other things like traffic signs, lane markers, vegetation 

overgrowth or manholes to name just a few. It can also be converted into a system that monitors snow 

cover or weather conditions live. 

 


