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1. Problem Description 
According to the NOPUS survey, at any given daylight moment across America 

approximately 660,000 drivers are using cell phones or manipulating electronic devices 
while driving [1]. According to the same survey, this number has held steady since 2010, 
despite major investments into awareness programs and numerous changes in legislation. 
Recently, there has been significant interest into automatic detection of driver distraction. 
Such research often focuses on the driver’s eyes in an attempt to detect gaze direction 
(determine where the driver is looking at.) The difficulty with such approach is that it either 
requires active infrared illumination, which can be “blinded” by the sun, or requires 
significant computation to recognize the driver’s face, determine pose, and estimate gaze. 
Furthermore, this approaches often requires high-resolution cameras in order to be able to 
accurately observe the user’s eyes. Instead of focusing on the driver’s eyes, this report 
describes an approach where we obtain an overhead or over-the-shoulder view of the car 
interior with the objective of determining if the driver is holding or using a cell phone or 
other electronic device. We expect this to be a superior method because the screen is often 
illuminated, relatively large and, when in use, turned directly towards the user’s head and, 
consequently, to the over-the-shoulder camera. 

 

2. Approach 
The objective of this project is to 

achieve automatic detection of the use 
of electronic devices (e.g. cell-phones) 
by the driver of a motor vehicle. The 
described approach acknowledges that 
not all uses of electronic are equally 
dangerous and attempts to specifically 
detect the presence of distracting 
screens. The proposed method uses an 
over-the-shoulder camera to observe 
and alert the driver in the event of 
distracted driving. We use a detection 
via classification approach using 
several hand-engineered features. 
Results on a novel dataset collected 
with several drivers simulating 
distracted driving when using a cell-
phone are presented to demonstrate the 
efficacy of the vision-based approach.  

 
FIGURE 1. View from an over-the-shoulder 
camera of the interior of a vehicle. The vision-
based approach developed in this project 
detects the use of a cell-phone by the driver of 
the vehicle (green box). 

 



3. Introduction 
Automated solutions to detect driver distraction have the potential to increase road 

safety and reduce distraction-related fatalities. We developed a novel approach to in-vehicle 
vision-based detection of cell-phone use by the vehicle driver as shown in Figure 1. Recent 
solutions to detecting driver distraction typically rely on a combination of face-detection 
and gaze-tracking. During the detection stage, the face of the vehicle operator is localized. 
The gaze-tracking stage is able to determine whether the driver is focused on the road or is 
distracted from the task of driving. The challenges with gaze-tracking are twofold. Firstly, in 
order to track the eyes, active perception techniques such as infrared cameras are used. The 
IR cameras can be “blinded” by direct sunlight. Additionally, the face detection stages, pose 
estimation, and gaze-tracking stages can require significant computation. Second, any eye-
tracking mechanism requires high-resolution cameras to focus on the driver’s eyes. It is a 
common practice to wear sunglasses when driving, which causes degraded performance of 
such eye-tracking systems.  

The contributions of this project differ from traditional approaches in the following 
ways: 1) an over-the-shoulder view is used to determine if the driver is using or holding an 
electronic device. 2) The approach does not require the use of face-detection and high 
accuracy eye-tracking. The presented approach relies on the fact that the screen is 
illuminated when in use by the driver, and consequently visible to the over-the-shoulder 
camera. 

 

4. Related Work 
Advanced Driver Assistance Systems (ADAS) are being adapted to monitor the 

activity within a vehicle or perform “Cockpit Activity Assessment”. In reference [8], the 
authors design a stereo-camera system to observe the driver’s head and gaze direction. The 
driver’s viewing area is divided into four regions, comprising the road ahead, windshield, 
left, and right mirrors. An attention mapping stage determines whether the driver is 
distracted. The method in [8], however, requires a specialized stereo-camera setup and the 
explicit need to map the driver’s viewing area, while this project uses a monocular camera. 

The authors in [12] propose a novel “Visual Context Capture, Analysis and 
Televiewing (VCAT)” system. An omnidirectional camera is used to capture the view of the 
interior of the vehicle, and regions of the road outside the windshield. Gaze detection is 
performed for the driver of the vehicle, and a synthetic image from the driver’s viewpoint is 
generated. The authors design the system to be able to alert the driver with regards to blind 
spots and other distractions. Again, although relevant and promising, this work differs from 
the present project for its need of a highly specialized camera and complex computation. 

Recent work in face detection and analysis of facial expressions has led to automated 
detection of driver distraction. E.g., “IntraFace” is a state-of-the-art facial analysis package 
[5]. The authors show driver distraction results based on a monocular camera observing the 
driver’s face. The detection stage uses supervised descent [15] and expression analysis is 



carried out using selective transfer machine [3]. This work does not use infrared cameras 
and so is not “blinded” by the presence of strong sunlight. However, it is still highly sensitive 
to the use of eyewear (and, in particular, sunglasses) by the driver. 

A “Head mounted Eye-tracking Device (HED)” is proposed in [13]. The authors 
describe a comprehensive system for eye-tracking and gaze detection using custom 
designed hardware, and describe the issues related to defining a “distracted gaze.” A 
comprehensive review of sensing technology to characterize driver behavior (e.g., 
drowsiness) is found in [11]. Head-mounted devices have superior accuracy to almost any 
other method of driver distraction, but the need for the driver to wear a device greatly limits 
these applications in real-life scenarios. 

 

5. Data Collection 
All data was collected using the NavLab11 platform at Carnegie Mellon University’s 

Robotics Institute. Liability issues restricted data collection to conditions when the vehicle 
was stationary. Consequently, unmodeled environment dynamics when the vehicle is in 
motion are beyond the scope of this work. 

Data was collected with three different drivers (Figure 2). Each driver had a distinctive 
vehicle operation characteristic, and pattern of cell-phone use. For example, while one 
driver was dominantly right handed and used the phone only with the right hand, another 
driver often swapped hands when using the phone. Another observation was that one driver 
preferred to use the cell-phone rested against the steering wheel while another driver never 
brought the phone up near the steering wheel. 

Each driver was asked to simulate real driving conditions for the entire data collection 
period. This included turning on the stereo at the start of the data collection cycle. Going 
through all car controls and performing typical operations such as adjusting the stereo and 
mirrors. During the course of simulated driving, the driver was asked to use the cell-phone  
 

 
FIGURE 2. Images captured by the Pointgrey Flea2 camera mounted with a Fujinon Fish-eye 
lens. The three drivers have visually different driving styles and seat adjustment preferences. 
Additionally, while drivers 1 and 2 (from left) use the cell phone around the steering wheel, 
driver 3 only uses the phone at waist level. 



for typical tasks such as looking at navigation information and replying to a text message. 
Individual images in each dataset were labeled with ground truth locations of the cell-
phone. The bounding box annotation was performed manually after collection of each 
dataset, and over 125,000 frames were labeled. The focus of the method described in this 
report is to detect events when the driver was using the cell-phone during the data collection 
run.  

 

6. Method 
An overview of the method is shown in Figure 3. Detection of cell-phone use is 

performed via classification of individual patches within the image. The images used in the 
report are 3 channel, 8-bit RGB color images.  

 

 

 
 
FIGURE 3. An overview of the approach. An SVM is trained using features computed on 
patches corresponding to positive and negative instances of cell-phones. At test time a 
sliding window detector performs classification of each patch in the test image [7]. 
 



6.1 Terminology 

The following notation is adopted: 

• I – over-the-shoulder image observing the driver (dimensions m x n) 
• M – pixelwise mask of region around driver (dimensions m x n) 
• P – image patch (region of interest) (dimensions p x q, p≪m, q≪n) 
• yi ∈ {phone, non-phone} – patchwise binary label 
• χ = {(P1, y1), . . . , (Pn, yn)} set of patches corresponding to training data with 

associated labels 
• φ(P ) – feature computed from patch 
• X = {φ(Pi) | yi = phone} – set of features corresponding to positive instances 
• N = {φ(Pi) | yi = non-phone} – set of features corresponding to negative instances 
• h : φ(P) → y – classifier to predict the label of test patch 

 
6.2 Detection via Classification 

The method uses a sliding window-based approach to cell- phone detection. Each 
window is independently classified as to whether it corresponds to a cell-phone as shown 
in figure 4. This section describes the training mechanism for the classifier and detection 
stage. 

 

 
FIGURE 4. The sliding window detector shows several patches corresponding to negative 
samples (red) and a single positive patch (green). Since the space of all possible negative 
patches is very large, and the most informative negative patches are obtained using hard-
negative mining. 



6.3 Classifier Training 

The set of training patches χ comprise of regions with cell-phones as positive 
instances, and randomly sampled patches (without overlap) which do not contain the 
phone. Each patch is represented in a corresponding feature space, φ(P). A linear Support 
Vector Machine (SVM) is trained on each φ(P ), to learn the corresponding weight vector w 
and bias b which separates the two classes. The set of positive instances X ⊂ φ(χ) are 
separated from all the negatives N ⊂ φ(χ) by the largest possible margin the corresponding 
feature space. To learn the weight vector w, the SVM minimizes the convex objective 
function of the following form: 

Ω(w, b) = ||w||, 	+ C 0 h(w2x + b)
4∈5∪7

	

The hinge loss function is of the form h = max(0, 1 − x). The SVM is driven by a small 
number of examples near the decision boundary. Since the space of all possible negative 
instances is very large, hard-negative mining is used on a subset of negative patches [10]. 
The training process alternates between evaluating the model on error-prone patches and 
adding the corresponding examples to the training set. The current implementation uses the 
vl-feat library for feature extraction [14]. Initially, positive instances and randomly sampled 
non-overlapping patches are used to train a model. Subsequently, the method alternates 
between mining the data for hard negatives and retraining the model. During the negative 
mining step, data augmentation is performed for the negative samples. An analysis of the 
patches corresponding to hard-negatives revealed that the regions with strong linear 
gradients were often selected, e.g., top left corner of the windshield. Intuitively, the top- 
right corner should also be a hard negative. The hard-negatives are augmented by 
performing a left-right flip on the corresponding patch and adding the reflected patch to the 
training set. 
 
6.3 Evaluation on test data  

The dataset is collected from three different drivers. Data from a single driver is used 
during the training stage, and data from the other two drivers are used for testing. Each data 
collection run lasted twenty minutes per driver, and the overall dataset comprises of over 
an hour of footage simulating driving conditions and cell phone use. The patches 
corresponding to positive samples containing the cell-phone are shown in Figure 5. The 
scale of the detection is known during the training stage. At test time, a sliding window 
classifier is run at the previously known range of scales and classify each window using the 
SVM. In order to reduce the false positive rate, classification is performed only for patches 
which fall within the probabilistic mask M which is learned from data during training time 
(Figure 6). The mask can also be manually specified by the user around a region of interest 
encompassing the driver. The mask represents a prior belief on possible locations of phone 
use. The score map during detection is convolved with the mask, to obtain the posterior 
locations of the phone. Non-maximal suppression is applied to the convolved score map 
and the top scoring bounding boxes corresponding to the phone location are returned. 



 
FIGURE 5. Training images corresponding to ground truth locations of the cell-phone. The 
dominant role of the hand in addition to the brightly lit screen, requires that the approach 
must be invariant to skin tone. The images captured are from a driver who is right-handed. 
During training, the dataset is augmented using the left-right flip to be able to adapt to left-
handed cell phone users.  
 

 
FIGURE 6. The mask within which the detection is performed is overlaid has a heatmap. The 
current driver is dominantly right-handed. Consequently, the heatmap is relatively focused 
to capture the region spanned by the driver’s right hand. 



7. Results 
Four hand-engineered features for the task of cell-phone detection are compared. 

The features evaluated are SIFT [9], color histograms, FREAK [2], and HoG [4], [6]. The 
precision-recall curves for each feature space are shown in Figure 7.  The learned color 
model and HoG template of the cell-phone is shown in Figure 8.  

 

 
FIGURE 7. Precision-recall curves characterizing the performance of different feature space 
for cell-phone detection. The gradient-based feature spaces perform the best, since the 
gradients associated with the brightly lit phone screen are stable. The change in ambient 
lighting during recording causes intensity-based features to become unstable which results 
in lower performance. 
 

 
FIGURE 8. From left: Average image of training data, visualization of the weight vector on 
each color channel, and rendering of the learned HoG template. 



The results indicate that HoG features are well suited for the cell-phone detection 
task since the gradient associated with the boundary of the cell-phone is well characterized 
when the device is in use as seen in Figure 9. 

 

 
FIGURE 9. Successful detection results on test data. The figures on the left column show the 
driver switching hands for phone use. The location of the camera was slightly shifted for the 
figure on the right, and the light at the interior of the vehicle was switched-on resulting in 
different lighting conditions. 



The detection is also successful for cases when the phone is partially occluded by 
the driver as shown in Figure 10. Since a certain region of the screen is visible to the camera, 
the detection is successful. The failure cases are when the phone is used with an out of 
plane rotation by more than 60 degrees as shown in Figure 11. In this case, the only portion 
of the phone visible to the camera is a narrow region of the screen and the buttons on the 
side. The template fails to generalize to this case due to the relatively rare occurrence of out 
of plane rotation. 

 

 

 
FIGURE 10. The vision-based method is able to successfully localize the cellphone screen, 
despite partial occlusion by the driver’s hands and shoulders. 



 
FIGURE 11. The images on the left show correct detections when the driver uses the phone 
with the left hand, and over the steering wheel. The failure cases are shown in the right 
column. The large appearance change caused by out of plane rotation causes the detection 
to fail. 

 

The detection is also tested for domain adaptation on images of cell-phone use 
collected from the web. The images exhibit significant variation in illumination, scale, and 
background. The method is able to successfully adapt across different domains, as shown 
in Figure 12. 

 



 
FIGURE 12. Successful detection results on test data. The figures on the left column show the 
driver switching hands for phone use. The location of the camera was slightly shifted for the 
figure on the right, and the light at the interior of the vehicle was switched-on resulting in 
different lighting conditions. 

 



8. Conclusion and Future Work 
This report presents a framework for automatic detection driver distraction when 

using a cell-phone or another handheld electronic device. An over-the-shoulder-camera is 
used to observe the vehicle operator. A sliding window detector is used to classify individual 
patches in the image. A quantitative comparison of four different hand-engineered features 
is presented. The best performance is obtained by using the HoG descriptor. Future 
extensions to the work include exploration of additional feature spaces and incorporating 
human body pose estimation into the framework. 
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