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1. Problem 
  
Autonomous vehicles are becoming a reality. Many car companies are already           
incorporating advanced cruise control systems (such as active lane-keep, automatic braking,           
etc.) into current generation of vehicular systems. As cars become more autonomous,            
incidences that require human driver involvement will become less [1-3]. However, this will             
likely result in less attentiveness in the drivers when driver involvement is required. In order for                
the car to safely give control to the driver, the system must be able to understand the attention                  
level of the driver. 
  
Prior work has explored on-body sensors to maintain attention level of the driver [4-7]. These               
works often have sensing requirements that require direct contact with the driver, making them              
unsuitable for casual drivers. Another approach utilizes camera based systems that monitor the             
driver [5, 7]. These systems are often sensitive to different lighting and line-of-sight limitations.              
Furthermore, these works focuses on maintaining the driver's attention, as oppose to            
understand the level of inattention due to the current driver state. 
  
In order to address the challenge of understanding attention level, we developed a non-intrusive              
sensing system embedded in the car seats to infer driver physiological states in two levels: 1)                
posture and motion (macro-motion) and 2) muscular and cardiovascular states (micro-motion). 
  
 
2. Our Approach 
 
Our driver monitoring system consists of three-tiers: 1) an inertial sensor node network to sense               
motion and muscle vibration, 2) a mobile data aggregator to collect and transmit data, and 3) a                 
backend server to process transmitted sensor data. Each tier has different processing and             
communication capabilities that must be dynamically optimized over different sensing          
applications. A brief overview of these three main components is shown in Figure 1, and their                
details are provided below. 
 
Sensor Node Network The sensor network of the system is made up of a set of small                 
unobtrusive inertial sensor nodes that enable fine-grained activity monitoring by detecting body            
motion as well as the skeletal muscle vibrations. The network consists of inertial sensor nodes,               
a microcontroller chip, and three triaxial sensors: accelerometers, gyroscopes, and          
magnetometers. The main challenge in sensing is that since the sensor nodes are designed to               
be small and to collect data as fast as possible to capture small amplitude transient vibrations,                
they are relatively resource constrained. To this end, we included a mobile data aggregator, to               
coordinate their sampling and data transmission to the backend server.  
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Mobile Data Aggregator Since the sensor nodes are resource constrained, the monitoring            
system uses a mobile data aggregator to coordinate the sensor sampling, error correction, and              
wireless data transfer to the backend server. In other words, this component is in charge of                
driving the sensor network, as the master on the node system. We used a wired connection to                 
communicate with the other sensors on the same suit and Wi-Fi to communicate with the base                
station. Although the network is extremely bandwidth limited due to the high number of sensors,               
the processing on the aggregator is less constrained compared to the sensors. Thus we used a                
differential compression running on the aggregator to reduce the wifi load to the back-end              
server. This significantly reduced the processing needed for the aggregator to run the wifi              
system due to the reduced clutter on the wireless transmission. 
 
Backend Server The backend server receives inertial data to create human motion and             
vibration 
signatures to infer muscle identity as well as stress level. The back end server contains two                
modules: 1) posture and motion recognition (macro-motion), and 2) muscular and           
cardiovascular activity inferencing (micro-motion) module. The first module involves detecting          
large amplitude low frequency motions, while the latter one focuses on small amplitude high              
frequency signals.  
 

  
Figure 1. System Overview 

 
 

3. Methodology 
 
The posture and motion recognition module extracts the overall activities of the driver through              
human body modeling and inertial data mining. The main challenge of this module is to deduce                
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those information using limited sensing ranges (i.e., only through the contacts). To overcome             
this limitation, we combined data from multiple sources and utilize a physical model of human               
body to compensate for unobserved body posture and motion.  
 
The muscular and cardiovascular activity inferencing module identifies activated muscles and           
measures muscle tension and cardiac muscle activities (heart rate, blood flow, etc.), which in              
turn are used to infer stress and fatigue level of the driver. This fine-grained activity recognition                
is achieved by combining feature selection and machine-learning techniques to achieve muscle            
group identification. We then use the change in the data to determine states of the muscle,                
namely to differentiate between a fresh and fatigued muscle. The human heartbeat generates a              
rather sizable vibration, which can also be detected using our sensors. The key challenges in               
obtaining finer granularity body data, such as inferring muscle fatigue, resides in low signal to               
noise ratio, where the signal of interest is very low amplitude, while others such as motion and                 
vehicle dynamics result in large amplitude signals. In fact, the muscular vibrations have             
overlapping ranges as motion and vehicle dynamics. We infer this information only when             
detected motion is low combining motion tracking and activity information to determine when the              
lower frequency component. 
 
 
4. Results 
 
The results are in two aspects. The hardware sensor network and the algorithm.  
 
Hardware:  
 
We first developed a hardware system described above that consists of a network of 
accelerometers, gyroscopes, and magnetometers embedded inside car seats and seat belts. 
Pictured in Figure 2.  
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Figure 2: Back of the seat cushion on which the network of sensors and controller are mounted                 
is shown. Marked in red circles, are the sensors. The Arduino Due controller is marked in                
yellow. 
  
Algorithm: 
 
The algorithm is used to detect a number of features. The drivers presence is shown in Figure 
2. Each pair of vertical blue lines with labels [A1, A2], …, [F1, F2] are the time of a pair of 
stand-up and sit-down of the driver on the seat. As can be seen from the spectrogram, the times 
at which the drivers stand up and sit down produce a banding effect (high energy across all 
frequencies, which is closely related to the singularity in signal). The system was able to identify 
the driver’s presence using this feature and will potentially detect/identify other detailed 
movements. 
 
 

 
Figure 2: Driver’s presence detection results.   
 
Figure 3 shows the energy of the person sitting on the seat with the leg crossed. The dark blue 
represents low energy value while red and orange represent high signal energy value. Note that 
vibration energy is higher when the body does not touch the seat because the body adds an 
additional mass the system needs to vibration and slows down the sensor movement. These 
features are used for detection of the person sitting position.  
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Figure 3: Spatial distribution of signal energy as the driver crosses the right leg.  
 
 
 

 
Figure 4. Time-frequency analysis of in-seat accelerometer data as the driver changes breathing             
rate.  
 
Figure 4 shows the result from driver breathing while sitting in the seat. The vertical blue lines                 
with labels [A1, A2], …, [D1, D2] indicate periods of rapid breathing. These periods are well                
correlated the times of high energy (red and yellow color) around 4Hz in the time-frequency               
plots. The plot shows the breathing can be detected from the users while sitting in the seat                 
without motion.  
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Figure 5 Muscular activity recognition results 
 
Figure 5 shows the results of recognition for the leg muscles. The subject tense of muscle is vs.                  
relaxed in the seat is measured and the results 97% accuracy of the activity recognition. This                
result can lead to detection of changes in stress level while in the car due to driving situation                  
changes.  
 
 
5. Outcomes 
  
Publications, conference papers and presentations 

Mokaya, F., Lucas, R., Noh, H. Y., & Zhang, P. (2015, September). Myovibe: Vibration based 
wearable muscle activation detection in high mobility exercises. In Proceedings of the 2015 
ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 27-38). ACM. 
 
Other Dissemination Activities 

1. We gave a seminar on this work at the Department of Mechanical Engineering, Virginia Tech, 
Blacksburg, VA, Mar. 25, 2015 
2. We presented a seminar at Korea Institute of Civil Engineering and Building Technology, 
Ilsan, South Korea, Jun. 9, 2015 
3. We presented our work at Bosch LLC, Pittsburgh, PA, Jul. 27, 2015 
4. We presented a seminar at University of Michigan, Ann Arbor, MI, Nov. 12, 2015 
 
 
6. Conclusions 
 
This project showed the viability of a vibration based sensing seat system that can measure a 
person's posture and physiological status of breathing and muscle activity. These results shows 
a possible future of smart car seats that can not only respond to the driver’s driving status but 
can be a health tool as well.  
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