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Modern vehicles consist of a myriad of devices and systems ranging from safety-critical
systems that control a vehicle’s brakes to auxiliary components that adjust cooling and wiper
speeds. While these technologies enhance the users safety and comfort, they also render
the vehicle’s networks vulnerable to cyberattacks. When such vulnerabilities are exploited,
attackers can gain access to safety-critical systems like the brakes and transmission of the
vehicle, as demonstrated by recent work.1,2

Alongside, another notable development in the automotive sector is the transition to
electric vehicles (EVs) motivated by efforts to downscale tailpipe emissions. Currently,
widespread EV adoption is bottlenecked by limited driving range, battery pack cost, bat-
tery lifetime and safety issues associated with Li-ion batteries.3 The battery pack forms a
significant fraction of the total cost of the electric vehicle (∼20% of the vehicle cost4). From
the standpoint of automotive cybersecurity, while the primary focus is on immediate safety
concerns, EV battery packs introduce several new points of vulnerability and safety concerns
which need to be explored.

Pictorial illustration of attack scenarios. The illustration enumerates all the variables that need
to be considered for analyzing the impact of a cyberattack, which could be (i) Physical or (ii)
Financial. The attack could utilize auxiliary components or the charging systems. We can also see
the attacker’s various control dimensions. The attacks can cause temporary effects or permanent
damage with attacks that span longer timescales. The only environmental state variable of relevance
is the ambient temperature. The different variables that define the state of the battery pack influence
the magnitude of impact due to the cyberattack. (The automobile outline illustration is published
with permission from Chris Philpot.)

One challenge in assessing systems involving batteries is to accurately analyze the complex
molecular-scale processes occurring inside a closed system. A practical battery system stores
a fixed amount of energy via reversible electrochemical reactions. During normal operation,
several unwanted side reactions also occur, which eventually degrade the battery’s ability to
store energy and thus, reduce the lifetime.5 In addition, from a safety standpoint, batteries
have a specified range of temperatures for safe operation, outside of which there is a potential
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risk of fire.3 Cyberattacks may compromise driving range by draining energy through a
higher load, reduce lifetime by enhancing side reactions, and compromise safety by pushing
the operating conditions to unsafe limits.

In this article, we develop a physics-driven approach to systematically analyze cyber-
attacks against EV batteries through simulations of the operation of an EV along with its
subsystems. Using this framework, we identify different cyberattack scenarios that can cause
either temporary or permanent damage to battery systems.

Attack Model

The threat model for an EV is centered around an attacker who aims to cause either physical
or financial losses through cyberattacks. Modern vehicles, including EVs, contain several
devices called Electronic Control Units (ECUs) that are responsible for the majority of
vehicle’s functions. These ECUs gather sensor inputs and actuate mechanical components
within the vehicle.1 Recent efforts have demonstrated numerous vulnerabilities in automotive
networks, particularly those that employ the Controller Area Network (CAN) communication
protocol. CAN is the prevailing standard for intra-vehicle communication due to low cost
and robustness; however, there are many CAN exploits.1 An attacker can gain access to the
vehicle’s internal network via direct physical access1,6 or the remote exploitation of an ECU
with existing direct access.2

Introduction to Attack Scenarios: If an attacker aims to cause financial impact, one
attack trajectory could be reducing the lifetime of the battery pack by enhancing the rate of
degradation. In terms of physical damage, cyberattacks could increase the risk of thermal
runaway where the attacker can overcharge or overdischarge the battery pack through attacks
on the battery management systems (BMS) used in conjunction with parasitic loads.

In order to enable an analysis of attacks that involve auxiliary components, we have
systematically compiled and curated the energy consumption patterns of different auxiliary
components along with their characteristic power profiles.Add figshare link? The attacks
on charging systems are simulated through modifications incorporated within the charging
protocols. A physics-based experimentally validated battery model7 is used within a ve-
hicle dynamics model to simulate the operation of the EV.8,9 We also explore the concept
of ‘stealthiness of attacks’ and the trade-offs between stealthiness of attack and extent of
damage from the attack.

Results
In this project, we analyze either financial and physical losses incurred through either: (i)
permanent damage, defined as a change in the state of system that is irreversible, for example,
irreversible capacity loss in a battery pack and (ii) temporary damage, defined as a change
in the state of system that is (mostly) reversible, for e.g., reduction in state-of-charge which
can be recovered by re-charging.
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Permanent Damage

As we stated previously, cyberattacks can accelerate cell degradation and shorten the life-
time of the battery pack. Experimental demonstration of degradation is typically indirect
as batteries are closed systems and measuring the internal states of the batteries is extraor-
dinarily difficult. Thus, a validated physics-based model that can track the internal states
of a battery packs provides a convincing means to demonstrate permanent damage due to
cyberattacks.

Among the different mechanisms that cause cell degradation, two main processes of in-
terest are: (i) growth of the solid-electrolyte interphase (SEI) layer at the graphite anode
and (ii) lithium plating.10,11 The SEI layer grows as a result of solvent reduction at the
anode-electrolyte interface and consumes Li+ ions, thereby causing a decrease in the amount
of active Li+ ions available and a reduction in capacity. Plating of Lithium at the anode
similarly leads to a loss in capacity as well as an increase in the risk of internal shorts which
could lead to catastrophic safety issues.3

We propose that the permanent damage due to a cyberattack can be quantified using
the rise in the internal resistance of the cell. The rise in the internal resistance is estimated
using the increase in the thickness of the SEI layer.10 The extent of Li-plating is controlled
by the electrochemical potential for lithium deposition or the ‘Li-plating potential’.11 The
EV battery pack end-of-life is characterized by degradation in capacity to 80% of the initial
capacity. We define the usable 20% of the capacity as the ‘vital capacity’ of the battery
pack.

Compromised Auxiliary Components: Compromised auxiliary components effectively act
as parasitic loads. Quantifying the impact of such attacks requires a close examination of
different operating and environmental variables. The variations in each of the state variables
like temperature, state-of-charge (SOC), pack size, age of the pack, etc. and the set of
variables that defines a given auxiliary component attack workload affects the degradation in
vital capacity in a different manner. A parametric analysis of all the variables, exploring the
effect of each variable, similar to other studies12,13 reveals that the damage to vital capacity
increases with the temperature by following the Arrehenius relationship which implies that
cyberattacks conducted at higher ambient temperature would cause greater impact. Damage
to vital capacity also increases with the State-of-Charge of the battery pack which suggests
that attacks on fully charged battery packs would cause more damage. As the age of the pack
increases, the damage caused by a fixed load in the same conditions decreases. The damage
to vital capacity is seen to be a sub-linear function of the total time of attack, characteristic
of a diffusion-limited process. Further, damage to vital capacity increases linearly with an
increase in the cumulative energy consumption of the load.add refs

Following the insights from the parametric analysis, attacks which comprise of energy
intensive auxiliary components engaged after a new battery pack is fully charged would
cause the most damage. We design the attack scenarios accordingly. We consider two types
of EV users based on charging behavior, either charging once at ‘Home’ or charging one
at ‘Home’ and at ‘Work’. The sample attack workload spans a duration of one hour and
is based on the combination of A/C at high power along with Lights, Power-Steering and
Wipers. We analyze the cases where these users are located in Oslo, San Francisco, Beijing,
Delhi and Phoenix which serve as proxies for the environment state variable of temperature
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and are chosen to represent a wide range of temperature conditions. In order to analyze the
impact of auxiliary component cyberattacks, we use ∆R, a quantity which represents the
increase in internal resistance of the cell compared to a cell which has not been subjected
to the attack workloads. ∆R essentially provides information on the effectiveness of the
cyberattack. We calculate ∆R after 400 days for each case using the following relationship,

∆R =
RA

SEI − RB
SEI

RB
SEI

, (1)

where RSEI is the resistance due to the SEI layer, and ‘A’ and ‘B’ represent the attack
and baseline scenario. For the quantities reported in (Fig. 1), ∆R∗ values are obtained by
normalizing all the ∆R values with the minimum value in a given set which facilitates the
comparison of values within the set.
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Figure 1: We can study the impact of auxiliary component cyberattacks here, based on the results
for simulations equivalent to ∼400 days. ∆R∗ represents the increase in the resistance of the cell
due to the cyberattack when compared to the baseline scenario. The triangular markers indicate
situations where the vehicle is attacked twice in a day. In such cases, the average ∆R∗ of the two
attacks is shown, while the circular markers represent the cases with one attack over the day.

In (Fig. 1), the rise in ∆R∗ is the most for Oslo, which has the lowest average ambient
temperature. While an increase in ambient temperature causes an increase in the thickness
of the SEI layer, the resistance due to the formation of SEI layer impedes further growth.
This phenomenon leads to the fact that places like Phoenix, where the ambient temperature
is high, already feature a substantial SEI layer thickness, thereby minimizing any additional
damage to vital capacity due to the attack workload. However, it is worth highlighting that
the average resistance due to the SEI film formed is higher in warmer regions compared to
colder regions. The two cases of charging, at Home and at Work, do not show any substantial
difference, although, if the EV is charged in both locations, then we have two separate time
windows for attack.

Compromised Battery Management Systems, Overdischarge: When a BMS is compro-
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mised, an override of the lower cut-off voltage is possible.14 An attack on an EV with a
depleted battery pack and compromised BMS can lead to overdischarge through energy-
intensive auxiliary components. In terms of such cyberattacks occurring on an EV with
the depleted battery pack, the idea of using wake-up functions as attacks has been demon-
strated recently.15 Such attacks could be followed by auxiliary component attacks discussed
in this work, to overdischarge the cells. During overdischarge, the initial stages involve the
decomposition of the SEI layer which is composed of Lithium containing compounds and
subsequently Copper dissolution from the current collector begins.16 The dissolved Copper
ions eventually lead to deposition of metallic Copper and potential internal shorts. The
time for potential failure can be estimated using the time required for the decomposition
of the SEI layer during the cyberattack, as shown in (Fig. 2). The cells shown in (Fig. 2)
correspond to that of a 100 kWh battery pack based on NCA (Ni0.8Co0.15Al0.05O2) cathode
and Graphite anode. The thickness of the SEI layer is a function of the age of the battery
pack where 50nm is assumed to be equivalent to a battery pack aged over 2 years, however,
the thickness would change with the vehicle operating conditions. We observe that attacks
that involve components with an energy consumption rate of over 200W, the timescale for
the complete decomposition of the SEI layer and potential failure is under 2 hours. While
the consequences of overdischarge in Li-ion batteries depend on the kind of materials used
in the cells, the impact could range from the loss of energy through the internal short to
thermal and safety events as well.14,16

, [0-3 kW]

Figure 2: A compromised battery management system, is vulnerable to attacks that override the
lower voltage cutoff which can overdischarge the pack. During overdischarge, one of the initial steps
is the decomposition of the Li-ion containing SEI layer which is followed by the dissolution of copper
ions from the current collectors, with the possibility of internal shorts and other safety events. The
estimated time to the onset of copper dissolution occurs during overdischarge is shown above for the
cells based on NCA (Ni0.8Co0.15Al0.05O2) cathode and Graphite anode. For components with the
power consumption equivalent to lights (∼200 W), the time to onset of copper dissolution is under
2 hours while components with a high power consumption like air-conditioning have a timescale of
less than an hour.

Compromised Battery Management Systems, Overcharge: A compromised BMS can mod-
ify the upper cut-off voltage.17 The pack can then be charged at a voltage higher than the
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Figure 3: The impact of cyberattacks on charging systems specifically aimed at overcharging the
battery pack is summarized here.(a) The attacks studied here span one hour after charging. We can
study the increase in the SEI growth rate and ∆R∗.(b) This increase along with Li-plating translates
to capacity fade and could shoten the lifetime to about 200 days at an overcharge voltage of about
0.4V. The reduction in the Li-plating potential due to overcharge in (Fig. 3a), which provides a
metric to quantify the risk of internal shorts and safety events like fire. As the same attacks are
performed on older packs, we can observe that the ∆R∗ growth rate increases while the Li-plating
potential decreases, both of which are detrimental to the state-of-health of the battery pack.

normal charging voltage leading to overcharging. Within a constant current-constant voltage
protocol, an increase in the charging current would lead to an increased rate of degradation
which is an extension of the previously mentioned parametric analysis on the discharge rate
of the battery pack. However, overcharging the battery pack leads to various other issues as
shown in (Fig. 3).

In (Fig. 3a), we observe a superlinear rise in the growth rate of ∆R∗ as the overvoltage
per cell increases in a fresh cell. The charging system cyberattack simulated spans a duration
of one hour after charging similar to the auxiliary component cyberattacks. However, the
consequent damage caused to the battery pack in terms of capacity fade, as shown in (Fig.
3b), is enormous. At a cell overvoltage of 0.4V, we observe that the pack reaches its end-
of-life or 100% damage to vital capacity in about 200 days. This could result in significant
financial impact as shown in (Fig. 3b) where we estimate the monetary value of the loss of
capacity for a 100kWh battery pack assuming the cost of battery packs of about $200/kWh.18

(Fig. 3a) also shows the decrease in the Li-plating potential which implies that lithium
would plate more readily at higher overvoltage. Over time, such attacks could lead to an
increased amount of Li-plating which could have safety implications resulting in physical
impact including thermal events and fire.19

Temporary Damage

With compromised auxiliary components, attack workloads can cause a depletion of energy
contained in the battery pack, thereby a reduction in available driving range. This damage
can be reversed by charging the battery pack. However, such attacks can play into the
well-known issue of ‘range anxiety’. For some vehicles, with battery packs <40kWh battery
packs, up to 20% of the available range could be depleted in under one hour with energy
intensive attack workloads which include combinations of auxiliary components as discussed
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previously. Such attacks which engage several components at the same time will be more
energy intensive compared to single components, however, such attacks might be easier to
detect for the user which is discussed in the subsequent sections.

Stealthiness of Attack

An important constraint on a cyberattack is the likelihood of it getting detected. In the case
of auxiliary components, the detection is by the user and hence it is difficult to develop a
quantitative metric for the same. However, in order to provide a basic overview of the issue,
we develop a qualitative understanding using three scenarios, namely, ‘parked’, ‘stationary’
(at rest within driving operation) and ‘driving’. A summary of the stealth of an attack
involving a given auxiliary component is given in (Tab. 1). Such a metric is heuristic but it
provides a calibration for the components that are more likely to be targeted based on the
attacker’s perspective. An auxiliary component that involves a high stealthiness of attack
and is also energy intensive would naturally be targeted often.

Table 1: Stealthiness of attack, a qualitative metric used by attackers to reduce the chance
of detection.

Auxiliary Component Stealthiness of Attack
Parked Stationary Driving

A/C-High High Low Medium
A/C-Low High High High
Power Steering N/A High High
Lights High Low Medium
Fan High Low Medium
Wipers Medium Very Low Very Low
Combinations High Low Low

Rowhammer Attack

Rowhammer style attacks20 have been demonstrated previously where targeted workloads on
memory systems were generated to cause corruptions which can be used to launch further
attacks. We observe an analogous case here with battery systems since battery pack is
made up of several cells arranged in a matrix involving a series-parallel configuration. This
architecture is vulnerable to ‘rowhammer’ attacks since individual strings or cells within
battery packs could be targeted through a compromised battery management system and
the damage to individual strings or cells is magnified. Each of the cyberattack scenarios we
have considered, like attacks on auxiliary components, overcharge, and overdischarge could
be orchestrated as rowhammer attacks. We previously discussed the various factors due to
which the damage to the battery pack increases with a reduction in pack size for the same
workload which is especially relevant to rowhammer attacks. Such attacks could not only
shorten the lifetime of the targeted subset of the battery pack but could also lead to issues
related to instabilities due to the isolation of strings within the battery pack.
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Conclusions
We have discussed the potential physical and financial impact due to cyberattacks on EVs
and EV subsystems. We identify simple but effective cyberattacks on auxiliary components
that can temporarily drain the battery pack up to 20% per hour. Furthermore, we analyze
attacks could lead to a deterioration in the power capability due to an increase in the cell
resistance. We use a metric which is equivalent to the ‘normalized resistance increase’,
which can be used to quantify the extent of performance reduction. We find that normalized
resistance increase is generally higher for colder regions. We find that cyberattacks on
auxiliary components launched after the pack is completely charged (i.e. high state-of-
charge) leads to more damage. The cell resistance increase, largely due to the formation of
a solid-electrolyte-interphase (SEI) layer, follows a sublinear relationship with time. This
results in a new pack being more vulnerable than an aged pack to cyberattacks on auxiliary
components. Compromised battery management systems expose the pack to two kinds of
attacks, (i) Overdischarge and (ii) Overcharge. Overdischarge attacks which override the
lower cutoff voltage of the pack could lead to the complete decomposition of the SEI layer
in under two hour thorough auxiliary components with a power rating of over 200W. The
decomposition of the SEI is followed by the dissolution of Copper ions which could eventually
lead to internal shorts and potential safety events. Cyberattacks launched during charging
through the compromise of the voltage regulator could lead to an overcharge of the cells,
which in some cases could even lead to physical safety issues (e.g. fire). Further, this
could lead to a new pack being depleted to 80% of its initial capacity (end-of-life for an EV
battery) in less than a year. Finally, a compromise of the battery management system could
lead to novel “rowhammer"-style attacks (attacking a string of cells), which could damage a
subset of cells in a short time span. We believe that the results presented here will inform
the development of robust detection and prevention systems and provide a rational design
approach for electric vehicle automotive security.
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