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Introduction 
The final project report for the SmartShuttle sub-project of the Ohio State University is 
presented in this report. This has been a two year project where the unified, scalable 
and replicable automated driving architecture introduced by the Automated Driving Lab 
of the Ohio State University has been further developed, replicated in different vehicles 
and scaled between different vehicle sizes. A limited scale demonstration was also 
conducted during the first year of the project. The architecture used was further 
developed in the second project year including parameter space based low level 
controller design, perception methods and data collection. Perception sensor and other 
relevant vehicle data were collected in the second project year. Our approach changed 
to using soft AVs in a hardware-in-the-loop simulation environment for proof-of-concept 
testing. Our second year work also had a change of localization from GPS and lidar 
based SLAM to GPS and map matching using a previously constructed lidar map in a 
geo-fenced area. An example lidar map was also created. Perception sensor and other 
collected data and an example lidar map are shared as datasets as further outcomes of 
the project. 
 

Brief Problem Description 
A major component of mobility in a smart city is the use of fully electric driverless 
vehicles that are used for solving the first-mile and last-mile problem, for reducing traffic 
congestion in downtown areas and for improving safety and helping in the overall 
reduction of mobility related undesired emissions. Currently available Smart Shuttle 
solutions have serious interoperability problems due to the low volumes of production 
and due to the fact that they are developed and manufactured by small startup 
companies in contrast to OEMs with their series production capability and large R&D 
departments. Current Smart Shuttle sensing and automation architectures are, 
therefore, also not easily scalable and replicable. Success of Smart Shuttles in Smart 
Cities requires an interoperable, scalable and replicable approach which is what this 
project addresses through model based design techniques.  

 
Project Approach, Methodology and Results 

Our model based design approach uses a unified software, hardware, control and 
decision making architecture for low speed smart shuttles that is scalable and 
replicable. Robust parameter space based design is used for easily scalable low level 
control systems development. Our model based design approach uses model-in-the-
loop and hardware-in-the-loop simulations before road testing. This method was 
demonstrated in proof-of-concept testing/deployment in non-public areas including 
parking lots.  
A unified scalable and replicable architecture and the hardware-in-the-loop simulator for 
automated driving were prepared in this project. Extensive model-in-the-loop and 
hardware-in-the-loop simulations were used for testing the automated driving system in 
the lab setting first. Testing included communication with other vehicles and 



instrumented traffic lights using a DSRC on-board unit (OBU) modem and a DSRC 
road-side unit (RSU) modem that were added to our connected and autonomous driving 
hardware-in-the-loop simulator. Four different platforms in two different vehicle size 
categories were used in experimental work for replicability and scalability. These 
vehicles were used in generating the experimental results some of which are given in 
this report. Please refer to the enclosed papers for more detailed results. 
Our work on unifying the structure with scalability and replicability is to create a 
standard base for hardware structure along with a library to be used by developers for 
faster and easier automation of vehicles. The hardware structure includes different 
types of sensors to achieve enough coverage, resolution and also robustness to 
external disturbances. Data from these sensors is processed by a high processing 
power computer to create meaningful information, which is used by a low-level 
controller, i.e. a dSpace MicroAutobox in our vehicles, to drive the vehicle autonomously 
by interfacing with actuators and sending necessary commands. The unified 
architecture is shown in Figure 1.  
 

 
Figure 1. Unified architecture. 

Replicability and Scalability 
Using this unified architecture, two different sized vehicles were automated. These are a 
sedan, representative of passenger vehicles and a small neighborhood electric vehicle, 
representative of small on-demand electric shuttles. Perception sensors such as Lidar, 
Camera, Radars were implemented as well as a GPS Sensor with RTK correction for 
localization. The dSpace MicroAutobox unit is used for low level controls and an in-
vehicle Linux PC with a GPU is used for sensor data computation. Moreover, DSRC 
(dedicated short-range communications) radios are added to have the capability of 
communicating with other vehicles, pedestrians, bicyclists and infrastructure. Pictures of 
the vehicles and the implemented hardware as well as the evaluation of the scalability 
approach is presented in our papers and is shown graphically in Figure 2 here. On the 
top are the two vehicles we automated first. These are a 2015 Ford Fusion and a Dash 
EV neighborhood electric vehicle. Both vehicles were made drive-by-wire first and the 
sensor, hardware and computing architecture of the Ford Fusion sedan was scaled 
down to the Dash EV vehicle. The low level longitudinal and lateral controllers 
developed for the Ford Fusion using the parameter space design approach were also 
scaled down and used in the Dash EV after some re-tuning due to changes in vehicle 
parameters. The architecture/results were, then, replicated as we migrated from the 



2015 Ford Fusion to the 2017 Ford Fusion and from the white Dash EV to the red Dash 
EV both in the bottom of Figure 2. The drive-by-wire system for the Ford Fusion 
vehicles uses a commercially available system that uses CAN bus commands to control 
the actuators. This drive-by-wire was moved from the 2015 Ford Fusion to the 2017 
Ford Fusion with a software upgrade that enabled shift-by-wire on top of the previously 
available throttle, brake and steer-by-wire. The drive-by-wire systems of both Ford 
Fusion vehicles were based on the original OEM actuators such that when the drive-by-
wire system was turned on, we had the original vehicle which we can legally drive on 
public highways. The drive-by-wire system of the Dash EV vehicle was prepared in-
house and is illustrated in Figure 3 for our first Dash EV vehicle. The throttle in this 
electric vehicle uses a potentiometer which was changed according to the autonomous 
driving controller using an additional circuit that changes the throttle potentiometer 
reading. A linear actuator was used to pull/push the brake pedal for brake-by-wire and a 
smartmotor and an extra half steering linkage was added to provide driver independent 
steering as needed for steer-by-wire operation. An extra electronic circuit with a 
manual/autonomous conversion switch was added for switching between normal vehicle 
operation and drive-by-wire operation. As the two Dash EV vehicle dimensions and 
characteristics were very similar, the drive-by-wire system was easily transferred from 
the first vehicle (white one on top in Figure 2) to the new one (red one in bottom of 
Figure 2). A remote e-stop kill switch with an RF link is also being added to the new 
Dash EV vehicle. Our new Dash EV vehicle has a license plate like or Ford Fusion 
vehicle and can be driven on public roads in the manual mode. 

 
Figure 2. Scalability and replicability. 



 
Figure 3. Dash EV drive-by-wire system. 

 
Along with the unified architecture, a unified Simulink library was also created. This 
library shown in Figure 4 consists of different types of blocks, including low-level control 
blocks for steering, throttle, brake, shift; sensor blocks for receiving data from the 
sensors in order to have environment perception and localization; and finally control and 
decision-making blocks for low and high level control of the autonomous vehicle. We 
are currently extending this library for use with NVIDIA Drive PX 2 GPUs. It is slightly 
modified for CarSim soft sensors and then used in the hardware-in-the-loop (HIL) 
simulations presented later in the report.  
 

 
Figure 4. Simulink vehicle automation library. 



 
Controls - Low Level Longitudinal Control 
Parametric modeling is the first step necessary in designing controllers. For the 
longitudinal speed control of the Ford Fusion sedan, we performed system identification 
on experimental data of different throttle step input and obtained a simple first order 
model. A typical example is presented here for a 15% throttle step input. The 
experimental data is recorded from the vehicle by giving a step input to the throttle and 
then recording the vehicle velocity [1]. A first order transfer function was then fitted to 
the vehicle velocity data. The transfer function obtained through this method for 15% 
throttle input is given in Equation 1. 
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The curve fit comparison of experimental, Simulink model and constructed Carsim 
model are shown in Figure 5 for 15% step throttle input. The procedure is repeated for 
different throttle openings to obtain a family of plants which are then used in a 
parameter space design to prepare a scheduled PID longitudinal speed controller.  

 
Figure 5. Velocity graph for experimental result, Carsim model and Simulink model for 15% throttle. 



It should be noted that the longitudinal dynamics of the vehicle is highly non-linear and 
changes with throttle position. While a simple curve fit at one throttle opening is shown 
and used for initial step, a more comprehensive multi-model determination based on the 
experimental data we collected is in progress and will be used in our future work.  

 

Controls - Low Level Lateral Control 
Lateral controller design also requires the development of a model of the lateral 
dynamics of the vehicle. Both Simulink and Carsim models were developed for both the 
sedan and neighborhood electric vehicles. The model building process involved the use 
of testing machines (for the sedan) as shown in Figure 6 for our 2015 Ford Fusion 
sedan and identification of parameters using standard tests (for the sedan and the 
neighborhood electric vehicle). The same models and low level controllers designed 
based on them as the architecture and controllers were replicated and transferred from 
our 2015 to 2017 sedan. A similar replication of model and low level controllers was 
used without problems as we migrated from one Dash EV vehicle to the next one.  
 

 
Figure 6. Measurement of vehicle model parameters of 2015 Ford Fusion. 

 
Measured, identified and estimated parameters for the sedan and small electric vehicles 
are listed in Table 1. 



Table 1. Vehicle lateral model parameters.  

 Ford Fusion Dash  
m 1977.6 kg 350 kg 
J 3728 kg𝑚𝑚2 350 kg𝑚𝑚2 
lf 1.3008 m 1.06 m 
lr 1.54527 m 0.96 m 
R 0.3225 m 0.24 m 
Cf 1.9e5 N/rad 1.8917e4 N/rad 
Cr 5e5 N/rad 1.8917e4 N/rad 
𝑘𝑘𝑝𝑝 0.15 0.9272 
𝑘𝑘𝑑𝑑 0.1 0.0801 

 
Satisfactory lateral control requires high accuracy of path tracking, and robustness to 
system parameter variations like vehicle load, speed and tire cornering stiffness. Figure 
7 shows variation regions of these parameters for our two vehicle platforms, the low-
speed shuttle Dash and the Ford Fusion sedan. The design procedure for lateral control 
we used satisfies D-stability and robust performance and is easily replicable and 
scalable to other vehicle platforms.  

 
Figure 7. Uncertainty region of vehicle mass m, longitudinal speed Vx and parameter η for Dash and Fusion 

experiment platforms. 

The system roots are confined in the D-stability region (Figure 8) in the complex plane 
to satisfy requirements like settling time, damping ratio and bandwidth. The mixed 
sensitivity criterion is also raised to ensure robust performance in frequency domain. 
The boundaries of the D-stability region, along with the points satisfying the mixed 
sensitivity critical criterion, are mapped to the parameter space of control parameters, kp 
and kd, for the robust proportional-derivative (PD) controller. Figure 9 shows an example 
of the control parameter space at one operating condition. The PD control parameters 
are chosen from the selectable region after overlapping parameter space for all 
operating conditions. A model regulator is added in combination with the robust PD 
controller to further reduce tracking error (Figure 10). The model regulator works by 
rejecting the road curvature as a disturbance for improving path tracking error in the 
presence of unstructured and parametric error in the vehicle model. Sometimes, we use 



a classical controller plus a feedforward controller since we usually have preview of the 
road ahead. This approach also improves path tracking performance considerably. 
 

 
Figure 8. Illustration of D-stability region in the complex plane.  

 
Figure 9. Parameter space of kp and kd at one uncertainty vertex 
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Figure 10. System diagram with the PD controller and model regulator. 
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Localization - eHorizon 
eHorizon is an electronic horizon equipment with a detailed map inside the device that 
can extract road information such as GPS, speed limits, heading direction, locations of 
the intersections, road curvatures, traffic light and STOP sign positions. In short, it gives 
us a 1-2 km preview of the map ahead. Due to the information it can provide, eHorizon 
is a powerful tool for Path Planning and Eco-Route Planning applications, as well as 
Fuel Economy studies for Automated and Connected Vehicles. eHorizon uses ADASIS 
v2 (ADAS Interface Specification) protocol and sends map related information over a 
CAN network. Map data is transmitted, deconstructed by eHorizon, transmitted in a 
series of messages, and then reconstructed by the device that eHorizon is connected 
to, such as the MicroAutoBox (MABX). 

The ADASIS protocol is founded on the idea of a “horizon”. The horizon is a defined 
distance ahead of the vehicle in which relevant map features are provided. The horizon 
data mainly comprises of paths (possible routes that the vehicle could take) and profiles 
(data about those routes such as traffic signals and slope), as seen in Figure 11. 
eHorizon calculates the Most Probable Path (MPP) that the vehicle is expected to follow 
and sends the information and profiles on this main path to the user. 

 

 
Figure 11: eHorizon Paths and Profiles 

 
The eHorizon unit comes with its own software for visualization of the route the vehicle 
is following. An example of how the eHorizon software looks during travel can be seen 
in Figure 12. The orange arrow in Figure 12 indicates the heading direction and position 
of the vehicle. The solid blue line on the map illustrates the Most Probable Path the 
vehicle is expected to follow. The green circles in the left side of Figure  represent the 
traffic lights and the red squares are used to illustrate the STOP sign locations. 
 



 
 

Figure 12: eHorizon window during in-vehicle experiment 

 
As an example, some experiments were run with the eHorizon Autoliv RoadScape unit 
of the Automated Driving Lab (ADL) which was placed in the Ford Fusion sedan. For a 
drive starting from and ending at our lab building at CAR-West, some results are 
summarized in Figure 14. The 1st subplot in Figure 13 shows the GPS points acquired 
with the eHorizon unit during the actual testing. Another information that could be 
extracted from eHorizon was the heading angle, and the results were plotted in the 2nd 
subplot. eHorizon was able to provide what type of road the vehicle was on, and these 
results were plotted in the 3rd subplot. Finally, the speed limit of the route the vehicle 
travelled on was gathered from eHorizon and was plotted in the 4th subplot. 
 



 
Figure 13: eHorizon results 

 
The eHorizon unit is also able to provide upcoming traffic light and STOP sign 
information. To get the upcoming traffic sign information, an in-vehicle experiment was 
conducted with the eHorizon unit in Columbus and the test route can be seen in Figure 
14. In Figure 14, red squares represent the position of the STOP signs and the yellow 
circle represents the position of the traffic light. Since we believe that the map is just like 
another sensor, the e-horizon or map preview sensor is also an important part of our 
unified autonomous driving architecture. 
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Figure 14: Test Route for eHorizon test 

 
On the test route, shown in Figure 14traffic sign information was gathered and can be 
seen below in Figure 15. Whenever the upcoming traffic sign was a STOP sign, an 
internal variable in the eHorizon unit provided value 2. Similarly, whenever the 
upcoming traffic sign was a traffic light, the same internal variable in the eHorizon unit 
provided the value 1. Even though there were a total of 3 traffic signs for this route, the 
eHorizon unit changed between 1 and 2 more than 3 times. The reason for that is 
because the eHorizon unit predicts the Most Likely Path the vehicle is going to travel 
and depending on that path, shows the upcoming traffic sign info. If the driver does not 
follow the Most Probable Path predicted by eHorizon, then eHorizon collects the correct 
traffic sign information for the route the vehicle is actually following from the map. 
 

 
Figure 15: eHorizon providing upcoming traffic sign info 
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Map Building/Matching Lidar Maps 
In the research and application of autonomous vehicle, to know about the current state 
and position of the ego vehicle is very essential. It is a demanding task to localize the 
ego vehicle and estimate the state of the ego vehicle as this information is needed by 
other functions in autonomous driving. To estimate the vehicle state, odometry and IMU 
data are used in different autonomous driving research and application. Also, in the past 
few decades, the development high accuracy dual antenna GPS encourages good 
performance of vehicle localization especially when real time kinematic corrections are 
used. In the meanwhile, the navigation suite is able to provide elaborate information 
about vehicle state alongside with global localization. However, high accuracy GPS 
cannot work well when the signal receiving gets weak due to the blockage from the 
environment, such as bridges and skyscrapers in an urban area. Thus, localization 
methods based on camera and Lidar sensors are developed.  
In our study, to ensure the precision of vehicle localization and vehicle state estimation, 
the GPS localization method with OXTS Navigation suite and map matching based 
localization are implemented.  

 
RTK-GPS 
For the GPS based localization, the RTK-GPS combination are used. The OXTS GPS 
navigation suite provides location information that is up to 20 cm accuracy with IMU 
data and has a built in Kalman filter. The RTK bridge from Intuicom® is a real time 
kinetic localization equipment that receives location information accessing the ODOT 
VRS System provided by Ohio Department of Transportation [2]. Combining the two 
devices under strong signal receiving, the accuracy of global localization is as high as 2 
cm. Typical accuracy values were around 5 cm while this dropped to 20 cm in 
downtown areas where some GPS satellite signals were lost. 

 
Map Building 
Map matching based localization technique is based on algorithms of point cloud 
transformation and matching. The requirements of applying map matching in 
localization include well built map and good matching algorithm. In this project, a 3D 
point cloud map was built for map matching based localization using 3D lidar data. 
The 3D map is built from 3D point cloud data captured by a Lidar sensor. And the 
mapping technique is based on normal distribution transform [3] for scan matching and 
ndt_mapping [4], that is, align different frames of point cloud data by transforming them 
into same reference frame and overlap the parts where they have similar point cloud.  
For the normal distribution transform of a single frame point cloud data, a piecewise-
continuous probability density function is generated as in Figure 16. Mean and 
covariance matrices are calculated from the point cloud within the grid. The higher the 
probability of point cloud lying in a grid, the larger is the value of its probability density. 



Thus, using the probability density function gives a good description of Lidar point cloud 
with respect to the density and probability of showing up. 
 

 
(a) 
 

 
(b) 

 
Figure 16. NDT for 2D laser scan data. Blue dots are original point cloud, probability distribution is shown as red 
and yellow area.  (a)The black area above is the laser scan to be transformed. Grid the laser scan and generate a 

density function of each grid. (b) Difference in probability of different grids. (IMORPHEUS.AI) 
 
For 3D point cloud data, the covariance matrix is composed from the eigen value and 
eigen vectors of the 3D point cloud, but the idea is the same with 2D point cloud. 
 
 
 



Map Matching based Localization 
Given a 3D point cloud map, the map matching based localization is used here as a 
compensation for GPS localization. Recently, various algorithms of scan matching are 
developed which are able to find the transform between two point clouds. Iterative Close 
Point (ICP) algorithms [5] and Normal Distribution Transform (NDT) are two commonly 
used algorithms with good performance. The approach we use in this study is the NDT 
method along with odometry extrapolation. [6-7].  
For the NDT algorithm, the inputs are pre-built 3D point cloud map and the current point 
cloud scanned by Lidar Sensor. By matching those two point cloud data, a 
transformation will be generated as 𝑇𝑇 = (𝑡𝑡,𝑅𝑅) where 𝑡𝑡 is the translation of current point 
cloud scan in the map and 𝑅𝑅 is the rotation. From the transformation information, the 
goal of localization in the reference frame of map is achieved. Figure 17 shows a 
graphical illustration of the NDT algorithm. With odometry extrapolation, a better guess 
of initial transformation for matching is acquired so that the precision of matching 
between current scan and pre-built map is increased.  
 

 
 

Figure 17. Sketch of NDT scan matching. The green point cloud and pink point cloud are aligning in the same 
reference frame after transformation. 

 
 
Example Lidar Maps 
Using the methodology discussed in previous part, we have built the map for several 
places in Columbus, Ohio. Examples are shown in Figures 18-20. Figure 18 shows the 
Scioto Mile route in downtown Columbus where an AV shuttle by a commercial AV tech 



company is operating seven days a week. Figure 19 shows the main route of the 
planned Ohio State University pilot AV shuttle deployment. The route in Figure 20 is the 
route we use in our initial tests of localization and autonomous driving. We have used 
these maps for map matching based localization and compared the results with high 
accuracy GPS recording of the same experiment and determined that accurate 
localization was achieved in real time operation. 
 

 
 

Figure 18. 3D Point cloud Map of Scioto Mile around COSI downtown Columbus.  
 

 
 

Figure 19. 3D Point cloud Map of OSU AV shuttle pilot route from CAR to CAR West. 



 
 

Figure 20. 3D Point cloud Map.of parking lot route at CAR West. 
 

In this part of the report, different techniques for vehicle localization were presented and 
applied to real time the autonomous vehicle operation. We emphasized map matching 
based localization in comparison to RTK GPS localization. NDT based map building and 
map matching were implemented for building 3D point cloud map and solving the 
problem of vehicle localization and state estimation.  
 
Path Tracking 
The low level automated driving tasks are lateral and longitudinal control. The path 
determination and path tracking error computation are described briefly in this section. 
The path tracking model consists of two parts, which are offline generation of the path 
and online calculation of the error according to the generated path. These parts are 
explained in following subsections. 
Offline Path Generation 
The path following algorithm employs a pre-determined path to be provided to the 
autonomous vehicle to follow. This map is generated from GPS waypoints where these 
points can be pulled from an online map or can be collected through recording during a 
priori manual driving. These data points are then divided into smaller groups named 
segments with equal number of data points for ease of formulation. These segments are 
both used for curve fitting and velocity profiling through the route. After dividing the road 
into segments, a process of fitting a third order (or higher order) polynomial is performed 
as 
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where i represents the segment number and the terms a, b, c, d are polynomial fit 
coefficients for the corresponding segment. Fitting the data points provides effective 
replication of the curvature that the road carries and also eliminates the noise in the 
GPS data points. To provide a smooth transition from one segment to another by 
satisfying continuity of the polynomials and their first derivatives in X and Y, we use 
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The X and the Y points derived from the GPS latitude and longitude data using a degree 
to meter conversion, are fit using a single parameter λ, where λ is the variable for the fit 
which varies across each segment between 0 to 1, resulting in 
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Error Calculation 
After the generation of path coefficients, an error is calculated for the lateral controller to 
use as input. Heading and position of the vehicle is provided by means of localization, in 
this case either SLAM, map matching or GPS. Using these, the location of the car with 
respect to the path, in other words, the deviation from the path is calculated. This 
approach reduces both oscillations and steady state lateral deviation compared to 
calculation with respect to position only. In order to find an equivalent distance 
parameter to add to the first component distance error, a preview distance ls is defined. 
Then, the error becomes, 
 

 ψ= + ∆tan( )sy h l  (6) 

 
where ∆ψ is the net angular difference of heading of the vehicle from the heading 
tangent to the desired path and y is the total error of the vehicle computed at preview 
distance ls as is illustrated in Figure 21. Finally, this error is fed to a robust controller 
which controls the actuation of steering of the vehicle. 



 
 

Figure 21. Illustration of error calculation. 

 

Car Following 

Cooperative Adaptive Cruise Control Design and Implementation  

For the longitudinal control of the designed system, a speed controller is used when 
there is no traffic. In the case of a vehicle(s) in front, a Cooperative Adaptive Cruise 
Control (CACC) algorithm is designed. V2V communication is used if the vehicle in front 
has a modem and is capable of sending basic safety message set information and its 
acceleration. If this is not the case, the CACC algorithm automatically defaults to 
Adaptive Cruise Control (ACC) for car following. The developed CACC controls the 
inter-vehicle time gap between the target vehicle and ego vehicle using a feedforward 
PD controller. In this design, the feedforward information is the acceleration of the target 
vehicle which is communicated through a Dedicated Short-Range Communication 
(DSRC) modem. In this report, exemplary simulation and experimental results with the 
designed CACC system are presented. The presented results indicate that CACC 
improves the car following performance of the ego vehicle as compared to Adaptive 
Cruise Control alone.  
The control structure of the designed CACC system is shown in the block diagram in 
Figure 22. String stability in both ACC and CACC modes are checked in advance. The 
designed control system is similar to the one designed and shown to be string -stable in 
[8]. Since the vehicle does not have built-in ACC, the low-level controller is designed as 
a gain-scheduled PI controller. As an upper controller, a PD controller with a feed-
forward controller is used. To sustain the string stability a constant time headway 
spacing policy is employed [9]. The input of the feedforward controller is the 
acceleration of the target vehicle which is transmitted through DRSC radio 
communication. 
 



 
 

Figure 22. Cooperative Adaptive Cruise Controller (CACC) block diagram. 
 
Development of the initial CACC model is done in the CarSim - MATLAB co-simulation 
environment [10]. CarSim is a vehicle simulation environment with the capability of 
simulating the dynamics of the vehicle. It can also simulate the target vehicle as a 
kinematic object. In the simulation, the target vehicle is driven by an Intelligent Driver 
model. By changing the desired speed and/or acceleration limits for the target vehicle, 
one can create different driving scenarios using the Intelligent Driver Model (IDM) [11]. 
Similarly, in the experiments, the target vehicle speed profile is chosen to be the same 
as the simulation target vehicle speed profile. The target vehicle speed profile is 
generated in real time with IDM driver similar to the simulation environment. In the result 
reported here, the target vehicle accelerates to 20 km/h and 25 km/h consecutively then 
it stops. In the CACC scenario, the simulated acceleration values for the target vehicle 
are broadcasted through DSRC OBU and are received by another OBU for the ego 
vehicle. One can see the experimental results for the ACC and CACC for 0.6 second 
time gap overlaid onto the simulation results on Figure 23.  



 
Figure 23. Comparison of ACC and CACC experimental results with simulation results for 0.6 second desired time 

gap. 
 

The simulation results match with the experimental results. The small mismatches 
between the experiment and CarSim simulation are caused due to the fact that the 
CarSim vehicle model is not an exact model of the experimental vehicle. In response to 
the speed changes in the target vehicle speed profile, the CACC controlled vehicle 
starts accelerating and decelerating faster as compared to ACC. Thus, the CACC 
controller can follow the target vehicle more accurately. CACC time gap following 
performance is much better than the performance of ACC. More details on the designed 
system can be read in [12]. 
 
Pedestrian Collision Avoidance 
Path Modification with Elastic Band 
Pedestrian collision avoidance is introduced in this subsection but the method 
presented is applicable to collision avoidance with other obstacles also. After the 
position of the pedestrian is obtained, an alternative path to be followed is created if a 
collision is imminent. For our case, this path is created by modifying the existing points 
on the path according to the position of the pedestrian. Our path modification algorithm 
is based on the elastic band theory, where socially acceptable distance is also 
considered in modifying the deformed path. In elastic band theory, the initial path is 
deformed by internal and external forces acting on the band. Internal forces are spring 
forces which hold the band or the path together while external forces keep the band or 
path away from the pedestrian like artificial potential field forces. Figure 24 shows an 
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initial path displayed as an elastic band which is deformed by both internal and external 
forces in the presence of a pedestrian.  

 

 
Figure 24. An initial path deformed by internal and external forces in the presence of a pedestrian (or other obstacle) 

on the path 

 
The elastic band is a sequence of displaceable nodes denoted by Ni in Figure 24 that 
initially correspond to the original local path of the autonomous shuttle in the vicinity of 
the detected pedestrian. The initial positions of the nodes Ni with respect to the 
pedestrian are shown by position vectors ri. Internal forces are formulated by adding 
springs with stiffness ks and spring force int

i, jF  acting on node i due to the adjacent nodes 
Nj with j=i+1 or j=i-1 for i=1,2,…,n. The function of internal forces is to hold the nodes or 
the local path together as a displaceable part of the route of the autonomous shuttle as 
shown in Figure 24. External forces ext

iF  acting on node Ni with i=1,2,…,n are defined 
once a pedestrian is detected to deform the band and hence the local path away from 
the pedestrian like artificial potential field forces. The external forces keep deforming the 
local path around the pedestrian who may be moving while the internal forces keep the 
nodes together in the form of a collision free path to be followed. ui for i=1,2,…,n are the 
deformations of the nodes under the action of external and internal forces when a 
pedestrian is detected. The internal forces int

i, jF  become *int
i, jF  after the deformation of the 

local path. After a pedestrian is detected, external forces are applied and the nodes of 
the deformed path become the new positions ri+ui for i=1,2,…,n as determined by the 
balance of internal and external forces acting on the nodes.  
The static balance of internal forces acting on node Ni in Figure 24 before a pedestrian 
is detected are  
 

 ( ) ( ) 0int int
i,i-1 i,i+1 i-1 i+1 iF F r r r rs i sk k+ = − + − =   (7) 

 
After the pedestrian is detected and external forces are applied, the static balance of 
internal and external forces acting on node Ni in Figure 24 become  
 



 ( )( ) ( )( ) 0int* int* ext ext
i,i-1 i,i+1 i i-1 i-1 i i+1 i+1 i i iF F F r u r u r u r u Fs i sk k+ + = + − + + + − + + =   (8) 

 
which using the identity in Equation 7 becomes 
 

 ( ) ( ) ( )2ext
i i-1 i i+1 i i-1 i i+1F u u u u u u us s sk k k= − − + − = − − +     (9) 

 

The external force ext
iF  acting on node Ni is calculated as a repulsive force using 
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where |…| denotes the magnitude of the argument. ( )
max

ext
iF  in Equation (10) is used to 

saturate the repulsive force within ir d<  so that it does not go to infinity as 0ir → . ke 
is the stiffness associated with the repulsive force and rmax is the range of the repulsive 
force. Once a pedestrian is detected and localized with respect to the path of the vehicle 
using V2P communication, Equations 9 and 10 are solved to obtain the new coordinates 
ri+ui for i=1,2,…,n of the locally deformed path. In the case of a moving pedestrian, the 
computations are repeated at each time step to continue to locally deform the obstacle 
avoidance path to be followed.  
The distance d in Equation 10 is also used to model the physical dimension of the 
autonomous vehicle dvehicle. Noting that ir d<  is a circular region around the pedestrian 
to be avoided, d is adjusted such the pedestrian stays within that region during any 
short duration relative displacement and the V2P communication delay of the car within 
the detection sampling instants. In the case of a moving pedestrian, the circular region 

ir d<  keeps moving with the pedestrian, requiring the local path modification 
calculations based on solving Equation 9 and 10 to take place within the steering control 
sampling time.  

In socially acceptable collision avoidance, the circular region ir d<  is increased to also 
accommodate a pedestrian socially acceptable distance of about 1.5 m and d is 
calculated using 
 

 vehicle pedestrians sociald d d d= + +   (11) 

 



where dvehicle, dpedestrian and dsocial account for our the autonomous vehicle dimensions, 
the pedestrian possible motion between two V2P detection sampling instances and the 
social acceptance distance for pedestrians. A maximum possible pedestrian speed of 
1.5 m/sec is used in computing dpedestrian. While pedestrian (obstacle) detection was 
based on V2P communication here, the method is applicable for the case of detection 
using other sensors like lidar, camera and radar. 
Following the Modified Path 
A preview distance of 15 m to the V2P detected pedestrian is used in the HiL 
simulations and experiment here to modify the path based on the elastic band method 
of the previous sub-section. After modification of the points on the path with the elastic 
band method, the modified path should be followed instead of the actual path. Our past 
work involved fitting several segments of cubic polynomials to the deformed elastic 
band nodes. This method was implemented in real time for a stationary pedestrian in 
our previous work. However, this approach limited our real time computation speed for 
moving pedestrians where the curve fits had to be repeated at each time instant. For 
this reason, a simpler method for following the modified path with a point to point 
approach is formulated and used here. This method runs much faster since it uses a 
much faster computation to determine lateral deviation at each node. This method is 
illustrated in Figure 25. 
 

 
Figure 25. Lateral error calculation for pedestrian avoidance 

 
In our new approach, the orthogonal distance to the line between two deformed nodes, 
which are the closest to the vehicle are calculated as shown in Figure 25. This distance 
is considered to be the lateral error for the modified path and used as the source of the 
lateral error for the steering controller, when there is a need to avoid the pedestrian. 
Calculation for a full elastic band method modified path consisting of 500 nodes and one 
pedestrian (obstacle) takes approximately 20 ms for one step while this time was 
approximately 200 ms for our previous method that used cubic curve fitting as 
explained. The lateral error 𝒆𝒆𝒚𝒚  for this method after the V2P based detection of a 
pedestrian on the path within the 15 m preview distance is 



 

 𝒆𝒆𝒚𝒚 =  
𝐝𝐝𝐝𝐝𝐝𝐝 (�𝒂𝒂𝒃𝒃�)

‖𝒂𝒂‖
  (12) 

 
 𝒂𝒂 = 𝑷𝑷𝟐𝟐 − 𝑷𝑷𝟏𝟏  (13) 
 
 𝒃𝒃 = 𝐏𝐏𝒗𝒗 − 𝑷𝑷𝟏𝟏  (14) 
 

where a and b are row vectors calculated from Euclidean coordinates of closest points  
𝑷𝑷𝟏𝟏, 𝑷𝑷𝟐𝟐 and vehicle’s coordinate 𝑷𝑷𝒗𝒗. ‖𝒂𝒂‖ is the length of the vector 𝒂𝒂. This calculation is 
done at every step that needs obstacle avoidance behavior when there is a V2P 
detected pedestrian (obstacle) who is nearby. A flowchart that presents the steps of the 
overall algorithm and decision making is shown in Figure 26. 

 

 
Figure 26. Flowchart of the algorithm 

 
 



Processing/Perception 

Nvidia Drive PX2 
The Nvidia Drive PX2 AutoChauffeur platform features two discrete GPUs and various 
functions for the development of autonomous vehicles. The Drive PX2 is intended to be 
used for online processing of trained neural networks to enable Autopilot and self-
driving functionalities. The platform features already trained networks like DriveNet, 
LaneNet, and OpenRoadNet. Some functions that can be easily implemented with the 
help of these networks include basic object detection and tracking, free-space detection, 
and lane detection. Such algorithms were run against the data we collected in the 
Easton Town Center shopping area. The results give promise to the development of 
autonomous vehicles using the Drive PX2 as the main controller in the vehicle. The 
Drive PX2 neural networks are based on the use of camera sensors and are suitable for 
autonomous shuttles in dry weather conditions. 
The lane-detection algorithm provides an indicator on the lane the vehicle is currently on 
along with markings on the adjacent lanes when they are present. The algorithm uses 
Nvidia’s pre-trained neural network LaneNet as shown in Figure 27. 
 

 
Figure 27. Lane detection algorithm. 

 
The free-space detection algorithm provides drive-able collision-free space and labels 
each pixel on the boundary with colors indicating whether the pixel is associated with a 
vehicle, pedestrian, curb or other. The algorithm uses Nvidia’s already pre-trained 
neural network OpenRoadNet as shown in Figure 28. 



 

 
Figure 28. Free space algorithm. 

 
Furthermore, the Nvidia PX2 architecture provides support for other external sensors 
which can be utilized in conjunction with some of the more sophisticated functions in the 
library to detect road parameters and actuate the vehicle via the car controller box. 

Detection and Classification with YOLO 
For the perception, one of the popular deep neural network methods YOLO [13] has 
been implemented in our experimental vehicle to detect the relevant objects on the 
road. In our case, relevant information can be considered as vehicles, pedestrians, 
cyclists, traffic lights stop signs and so on. For this perception task, a camera mounted 
at the windshield of our experimental vehicle is connected to the in-vehicle computer 
which is equipped with an Nvidia GPU. Example detection results for the deployed 
algorithm can be seen in Figure 29. 
 



Figure 30. FC-DenseNet architecture. 
Transition Up (TU) is the upsampling 
operation, which is a 3x3 transposed 

convolution.  Transition Down (TD) is consist 
of batch normalization, ReLU, 1x1 

convolution, dropout with p = 0.2, and 2x2 
max pooling [14]. 

 
 
Figure 29. Example perception results with YOLO real-time object detection algorithm at the Ohio State University 

main campus. 

 
Semantic Segmentation 
We investigate several neural network architectures that are tailored to the semantic 
segmentation task for outdoor scenarios.  

FC-DenseNet 

FC-DenseNet [14] is adopted from DenseNet architecture 
[15], which is built from dense blocks and pooling layers. 
Each dense block is iteratively concatenated with 
previous feature maps. Jégou et al. [14] suggest to 
extend DenseNet to a fully connected network similar to 
fully connected ResNet [16]. Regular fully connected 
networks use convolution, upsampling operations, and 
skip connections. In order to make DenseNet fully 
connected, the authors use a dense block rather than a 
convolution operation. Figure 30 illustrates an overview of 
FC-DenseNet.  

 

BiSeNet 

The second model is BiSeNet [17], which is designed 
to perform real-time semantic segmentation. The two 
main components of BiSeNet are the Spatial path and 
the Context path. Spatial path tries to preserve the 
input resolution by encoding rich spatial information 
using large feature maps. The Spatial path is 
comprised of three convolutional layers, each followed 



by batch normalization [18] and ReLU [19]. The Context path is designed to provide 
large receptive fields. The Context path is a lightweight backbone architecture such as 
Xception [20] that downsamples feature maps in order to obtain high level context 
information.  

 

Figure 31. BiSeNet architecture. a) The main architecture with Spatial path and Conext path. b) Attention 
Refinement Module (ARM).  c) Feature Fusion Module that is responsible for combining feature maps of different 
information level [17]. 
 

The Context path also includes an Attention Refinement Module (ARM), which is a 
global pooling average followed by 1x1 convolution, batch normalization and a sigmoid 
layer. The final output of this module is the multiplication of the input of this module by 
the output of the sigmoid layer. ARM is designed to capture global context information 
and computes a vector that guides the feature learning process. Since the Context path 
and the Spatial path contain different information about the scene, one cannot simply 
add feature maps resulting from these components. The Spatial path provides features 
that are rich in detail, while the Context path generates features that are high level. 
Combing these features is done via a module called Feature Fusion Module (FFM). 
FFM concatenates features, applies batch normalization, then uses a global average 
pooling. Figure 31 illustrates the BiSeNet architecture and its modules.  
 
Dense-ASPP 
A major problem in autonomous driving is the significant change in objects scales. 
Dense-ASPP [21] tackles this problem by using Atrous Spatial Pyramid Pooling (ASPP). 
ASPP [22] offers large receptive fields while preserving the spatial resolution. ASPP 



Figure 32. DenseASPP architecture [21]. 

concatenates multiple atrous-convolved features with different dilation rates to generate 
multi-scale features. In order to make features dense enough for autonomous driving 
scenarios, ASPPs are densely connected. Dense-ASPP is basically a set of densely 
connected atrous convolutional layers (Figure 32). For a more detailed description of 
this network please refer to [21]. 
Semantic Segmentation Experiments 
We investigate the performance of the three models: BiSeNet, DenseASPP, and FC-
Dense on the CamVid dataset. CamVid is an outdoor scene dataset which is recorded 
at 15 fps from the driver’s point of view. It contains 367 training, 101 validation, and 233 
test images totaling up to 701 images. The dimension of images is 960x720, and the 
dataset includes 32 semantic categories: Animal, Pedestrian, Child, Rolling 
cart/luggage/pram, Bicyclist, Motorcycle/scooter, Car (sedan/wagon), SUV / pickup 
truck, Truck / bus, Train, Misc., Road, Shoulder, Lane markings drivable, Non-Drivable, 
Sky, Tunnel, Archway, Building, Wall, Tree, Vegetation misc., Fence, Sidewalk, Parking 
block, Column/pole, Traffic cone, Bridge, Sign / symbol, Misc. text, Traffic light, Other.  
Some categories comprise less than 0.1% of the dataset. Therefore, we do not report 
them in the following tables. 
 

Table 2. Visual comparison between BiSeNet, FC-DenseNet, DenseASPP. 

Image BiSeNet DenseASPP FC-DenseNet Ground Truth 

     



     

     

     

 

Table 3 Accuracy, precision, recall, F1-score, and mean IoU for BiSeNet, DenseASPP, and FC-DenseNet. Values are given in 
percentage (%). 

 Accuracy Precision Recall F1-score Mean IoU 
BiSeNet 84.67 86.07 84.67 84.21 49.72 
DenseASPP 77.03 78.38 77.03 75.35 39.12 
FC-DenseNet 85.96 88.11 85.96 86.0 49.57 

 

Table 4 Class-wise accuracy for BiSeNet, DenseASPP, and FC-DenseNet. Values are in percentage (%). 

 Bicyclist Building Car Fence Pedestrian Sidewalk Sign Sky Tree Road Pole 
BiSeNet 88.30 85.88 82.50 84.02 67.83 82.43 75.02 95.14 84.46 91.75 51.99 
DenseASPP 83.64 77.89 82.56 85.34 48.91 61.70 63.77 87.00 80.65 82.80 38.38 
FC-DenseNet 88.18 86.50 79.57 81.85 58.90 84.41 61.87 96.12 86.42 91.58 38.90 

 Cart Child Lane Markings Motorcyclist Parking Traffic Light Wall 
BiSeNet 73.38 96.11 39.20 97.61 87.93 79.36 74.48 
DenseASPP 70.59 93.79 32.83 97.64 90.17 71.73 61.22 
FC-DenseNet 70.47 95.44 50.84 97.62 89.99 74.99 73.12 



 Road shoulder SUV Bus Other Moving Obj. Vegetation Void 
BiSeNet 92.36 79.21 94.26 87.64 85.39 42.30 
DenseASPP 92.67 67.39 92.23 84.07 80.73 41.52 
FC-DenseNet 95.08 78.43 92.78 85.40 87.15 47.00 

 
Input BiSeNet DenseASPP FC-DenseNet 

    

    

    



    

    

 
Decision Making 
At the core of autonomous vehicle control system, the supervisory controller plays a 
very important role in determining the appropriate state and subsequent course of 
action when faced with different situations. Decision making has been a research topic 
that has drawn broad attention and great progress is being made with the various 
methods that are deployed.  
To take care of the uncertainties in the environment, many research efforts in decision 
making have utilized the probabilistic method for errors that occur in the perception part 
of autonomous vehicle. Markov Decision Process is one of the most popular methods. A 
lot of work has been done in decision making based on Markov Decision Process or 
POMDP to deal with the uncertainties existing in perception and situational awareness. 
Also, since artificial intelligence is also commonly used and well developed, decision 
making based on machine learning has also been studied and implemented widely in 
autonomous driving.  
Due to the heavy computation and uncertainties in the probabilistic method and 
machine learning method, the platform for supporting decision making has to have a 
powerful computer like the NVIDIA GPUs used in our hardware architecture for good 
performance. The rule-based decision-making framework like the simple example in 
Figure 33 is used in this report because of lower computation complexity and ease of 
implementation on most of the vehicle platforms we use. Work on replicable and 
scalable probabilistic or machine learning based decision making is work in progress.  
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Figure 33. Diagram of Framework for Decision Making in the Unified Autonomous Vehicle Architecture with some 
of switching conditions shown. 

 

Evaluation - Data Collection and Sharing 
We used the Ford Fusion sedan to collect multiple sensor raw data for use in 
autonomous driving research. The data collection has resulted in eight datasets which 
we share in a box site and provide interested researchers with a publicly accessible link. 
We will continue these data collection and sharing exercises in more of the planned 
autonomous shuttle routes in Columbus, Ohio. The data collection covers areas 
including downtown COSI routes (Figures 34-36), Easton town center (Figure 37), road 
connecting CAR with CAR West (Figure 38), the parking lot around CAR West (Figure 
39) center and some highway routes around Columbus (no figure display). The data is 
classified based on the area and sensors used for data collection. Further development 
will include data from other areas and data labelling for various ways of utilization. 
 



 
Figure 34. COSI Loop 1. 

 

 
Figure 35. COSI Loop 2. 

 



 
Figure 36. COSI Loop 3. 

 

 
Figure 37. CAR to CAR West route. 

 

 
Figure 38. Easton Town Center with position of road signs. 

 
 



 
Figure 39. Parking lot at CAR West. 

 
The sensor suite used includes Velodyne VLP-16 16 channel 3D Lidar, Ouster OS1-64 
64 channel 3D Lidar, Pointgrey Camera with 30 fps and OXTS xNav 550 GPS/IMU 
data. From those sensors, different types of data are present in the dataset, which are, 
pointcloud data, images, GPS location data and IMU data. All the data are raw data 
stored in the format of a ROS bag file in order to make the data accessible to a wider 
audience. The rosbag play command can be used to playback the data. For the 
convenience of storing and using, we split the recording to consecutive files of 20 
seconds each and used a sequential ordering starting from 0, meaning the first 20 
seconds of data. The data is available for download at: 
https://osu.box.com/s/wl3ax8iywcciz0swzikdfbo7mzamrhey.  

Evaluation - HiL Simulator 
To extensively evaluate the performance of the developed low level controllers, along 
with both high level supervisory control, decision making and sensor placement, a 
hardware-in-the-loop simulator is employed. The HIL simulator is a platform where we 
can run several test scenarios in a realistic environment in real time. It also allows us to 
test our actual experimental hardware in the system. In the simulations, a high fidelity 
CarSim vehicle model is used to simulate the lateral and longitudinal motions of the 
vehicle alongside the soft perception sensors. While this model is running in the dSpace 
Scalexio HIL platform, a MicroAutobox controller, an in-vehicle PC with Nvidia GPU and 
DSRC modems emulate the actual control and communication scheme in this simulation 
environment. Control strategy and decision making were implemented inside the 
MicroAutobox while high fidelity vehicle dynamics model runs in real time on SCALEXIO. 
Traffic is added using other vehicles in Carsim and co-simulation with SUMO and PTV 
Vissim. The HIL simulator setup can be seen in Figure 40.  

https://osu.box.com/s/wl3ax8iywcciz0swzikdfbo7mzamrhey


 

Figure 40. Hardware-in-the-Loop simulator setup. 

 
The OSU AV pilot test route from CAR West (our lab location) to CAR (Center for 
Automotive Research – our main research center) shown in Figure 37 was chosen and 
constructed in CarSim to evaluate the vehicle’s decision making and low level control 
performance. To incorporate the real traffic into simulation, information about other 
vehicles on the road were imported from SUMO software. Placement and field of view 
(FOV) of the sensors implemented as soft sensors in the HIL simulation can be seen in 
Figure 41.  

 

 
 

Figure 41. Placement and FOV of the sensors on the car. 



Scenarios including stop sign, crossing traffic and traffic lights were simulated on the 
route in Figure 37 to test the decision-making strategies introduced in previous sections. 
Figure 42 shows the vehicle speed, steering and tracking error along the route. Since 
sharp turns appear when entering and exiting the main straight road, lateral error e was 
expectedly high for these two cases, but the look-ahead error y which combines the 
lateral and heading angle error was still relatively small. A video animation of this soft 
HIL AV test is present at: https://youtu.be/_yWiZWP0Rag.  

 
Figure 42. CARWest-to-CAR AV pilot test route HIL simulation results. 

 

Evaluation – Scalability of Path Tracking Experiments  
After the controller design, real world experiments were done for the purpose of 
analyzing the effectiveness of both controller parameters and overall unified approach. 
The path following algorithm developed for the sedan is scaled to the small electric 
vehicle and tested as it is driven autonomously on an open field. An oval path is 
generated for the vehicle to follow and loop two times in order to test both performance 
and repeatability. First path following experiment is done by using the lateral controller 
coefficients designed for the sedan vehicle without any change and it works except for 
the relatively large path tracking error as low speed is used. The second experiment is 
done with the controller coefficients re-tuned for the small electric vehicle. Results for 
both of the experiments are shown on the same plots in Figures 43 and 44 to make 
comparison easier. 
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Figure 43. Path following comparison of Dash EV for two different controllers. 

In Figure 43, we can see the reference path with comparison to the vehicle path while it 
is doing autonomous path following. We can also see two different controllers and how 
the performance is affected by changing coefficients according to the system 
parameters scaling down from one vehicle to other one. Sedan controller is not able to 
keep up with path when there is a curve and creates a significant error. There is also a 
very small error while it is following a straight road. Dash re-tuned controller on the other 
hand, is better in both of following a straight line or following a curved road. Moreover, 
the vehicle follows the same path for both its first and second lap in the experiments 
with both of the controllers, meaning repeatability is good for both of the controllers. 

 
Figure 44. Lateral error comparison for two different controllers. 

In Figure 44, we can see the lateral deviations in the course of approximately two laps 
of the path for both of the controllers. Lateral error from the experiment with the sedan 
controller yields higher peak values and has RMS value of 0.5636 whereas the other 



controller yields much lower peak values and has an RMS error value of 0.1443, which 
is very close to the value of 0.121. This is similar performance to that of the sedan 
vehicle with the sedan controller. It should be noted that the re-tuning of the control 
gains was conducted using a robust parameter space design and took a very short time 
to formulate and execute. A video of the Dash EV vehicle during this path tacking run is 
available at: https://youtu.be/WQjOZoPdQh4. The collision avoidance maneuvering 
application was also scaled successfully from the sedan vehicle to the Dash EV vehicle. 

Evaluation – Proof of Concept Testing On-Demand Shuttle 
A limited scale proof-of-concept demonstration of on-demand AV shuttle use as a first 
mile / last mile solution was conducted during the first year of the project in the parking 
lot around our lab. The video of this demonstration is available at: 
https://youtu.be/K9dCd4ofYxA.  
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Conclusions and Recommendations 
The final project report for the SmartShuttle sub-project of the Ohio State University has 
been presented in this report. SmartShuttle was a two year project where the unified, 
scalable and replicable automated driving architecture introduced by the Automated 
Driving Lab of the Ohio State University was further developed, replicated in different 
vehicles and scaled between different vehicle sizes. The project approach, some of the 
results obtained and links to some videos and raw datasets were presented in the 
report. The readers are referred to our publications for more detailed information.  
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Abstract
Future SAE Level 4 and Level 5 autonomous vehicles (AV) will require novel applications of localiza-
tion, perception, control, and artificial intelligence technology in order to offer innovative and 
disruptive solutions to current mobility problems. This article concentrates on low-speed autonomous 
shuttles that are transitioning from being tested in limited traffic, dedicated routes to being deployed 
as SAE Level 4 automated driving vehicles in urban environments like college campuses and outdoor 
shopping centers within smart cities. The Ohio State University has designated a small segment in 
an underserved area of the campus as an initial AV pilot test route for the deployment of low-speed 
autonomous shuttles. This article presents initial results of ongoing work on developing solutions 
to the localization and perception challenges of this planned pilot deployment. The article treats 
autonomous driving with Real-Time Kinematic (RTK) GPS (Global Positioning Systems) with an 
inertial measurement unit (IMU), combined with simultaneous localization and mapping (SLAM) 
with three-dimensional light detection and ranging (LIDAR) sensor, which provides solutions to 
scenarios where GPS is not available or a lower cost, and hence lower accuracy GPS is desirable. 
Our in-house automated low-speed electric vehicle is used in experimental evaluation and verifica-
tion. In addition, the experimental vehicle has vehicle to everything (V2X) communication capability 
and utilizes a dedicated short-range communication (DSRC) modem. It is able to communicate with 
instrumented traffic lights and with pedestrians and bicyclists with DSRC-enabled smartphones. 
Before real-world experiments, our connected and automated driving hardware-in-the-loop (HiL) 
simulator with real DSRC modems is used for extensive testing of the algorithms and the low-level 
longitudinal and lateral controllers. Real-world experiments that are reported here have been 
conducted in a small test area close to the Ohio State University AV pilot test route. Model-in-the-
loop simulation, HiL simulation, and experimental testing are used for demonstrating the feasibility 
and robustness of this approach to developing and evaluating low-speed autonomous shuttle 
localization and perception algorithms for control and decision-making.
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Introduction

For the sake of development of smart city, the Ohio State 
University has designated a small segment in an under-
served area of the campus as an initial autonomous 

vehicle (AV) pilot test route for the deployment of SAE Level 
4 low-speed autonomous shuttles. This article presents prelim-
inary work toward proof-of-concept low-speed autonomous 
shuttle deployment in this AV pilot test route which extends 
from our research lab through a 0.7 mile public road with a 
traffic light intersection and low-speed traffic to our main 
research center. Our approach is to develop and test elements 
of this autonomous system in the private parking lot right 
next to our lab and in a realistic virtual replica of the AV pilot 
test route created within our hardware-in-the-loop (HiL) 
simulator environment. As we have already reported our work 
on GPS waypoint following based path tracking in our earlier 
articles, this article concentrates on light detection and 
ranging (LIDAR) simultaneous localization and mapping 
(SLAM)-based localization for path tracking, a simple deci-
sion-making logic for automated driving and experimental 
and simulation results.

SLAM as first proposed by Leonard and Durrant-Whyte 
[1] is used to build up maps of surrounding environment with 
the aid of sensors such as LIDAR sensor or camera while also 
estimating the position of a robot simultaneously. A reliable 
and accurate solution of SLAM problems lays the foundation 
for an autonomous navigation and control platform [2, 3]. 
During the last decade, highly effective SLAM techniques have 
been developed, and state-of-the-art two-dimensional laser 
SLAM algorithms are now able to have satisfactory perfor-
mance in terms of accuracy and computational speed (e.g., 
GMapping [4] and Hector SLAM [5]). In addition, researchers 
have successfully extended SLAM applicable scenarios from 
indoor environment to outdoor environment for AV [6, 7]. 
Probabilistic map distributions over environment properties 
followed by Bayesian inference [8] increased robustness to 
environment variations and dynamic obstacles, which enabled 
the vehicle to autonomously drive for hundreds of miles in 
dense traffic on narrow urban roads. A fast implementation 
of incremental scan matching method based on occupancy 
grid map was introduced in [9] where data association was 
also applied to solve the multiple object tracking problems in 
a dynamic environment. Most of the previous work in the 
literature in SLAM methods has concentrated on the evalua-
tion of localization performance, whereas SLAM is used and 
evaluated as part of an automated path following system here.

In this article, both SLAM- and GPS-based localizations 
are used for localization and path following. The SLAM system 
used is based on the Levenberg-Marquardt algorithm, and 
results are compared with the Hector SLAM method. First, a 
reasonable convergence criterion was provided for the solution 
to the Levenberg-Marquardt algorithm in contrast to the fixed 
iteration step setting implemented in Hector SLAM, enabling 
more accurate and reliable pose estimation when combined 
with an integrated control system for smooth and comfortable 
path following performance. LIDAR is the only sensor that 

this SLAM algorithm depends on, posing effective solutions 
to scenarios where GPS is not available or a lower-cost and, 
hence, lower-accuracy GPS is desirable. Both HiL simulations 
containing different traffic scenarios and relevant real-world 
experiments were conducted. Results were demonstrated and 
evaluated to prove the feasibility and robustness of this 
approach to low-speed autonomous shuttle localization and 
perception algorithms for control and decision-making. 
Related videos were also accessible online1,2.

The article continues with an overview of the autonomous 
shuttle used in this study, the vehicle dynamics, and path 
tracking error models. The LIDAR SLAM algorithm and 
experimental GPS and SLAM-based path following results 
are presented next. This is followed by a description of the HiL 
simulator and how the AV test pilot route is replicated in the 
simulator including communication with the traffic light 
controller. After the experimental and simulation results, the 
article ends with conclusions and directions of ongoing work.

System Overview

Hardware and Platform
The vehicle used in the experiments for this study is a small, 
low-speed, fully electric two-seater shuttle used for ride 
sharing applications (Dash EV). The architecture and 
hardware presented in this article are general in nature and 
also implemented on other vehicles in our lab [10]. Architecture 
and connections are illustrated as a chart in Figure 1. In order 
to achieve autonomous driving capability, steering, throttle, 
and brake in this vehicle were converted to by-wire. This is 
done by adding actuators into the vehicle, since it was not built 
with them as some of the commercial sedan vehicles. For 
steering actuation, a smart motor was connected to the 
steering mechanism through gears. For brake actuation, a 
linear electric motor was fixed behind the brake pedal that 
pushes or pulls according to the position command. For 

1 https://www.youtube.com/watch?v=LwrdPRxHzrg.
2 https://www.youtube.com/watch?v=-O-H6KUAc8k.

 FIGURE 1  Platform architecture and connections.
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throttle, an electronic bypass circuit was constructed and used 
to override the throttle signal that is sent to vehicle electronic 
control unit (ECU) with the throttle command.

Sensors are added for localization and environmental 
perception after steering, throttle, and brake functions are 
converted to drive-by-wire. These sensors are GPS, a LIDAR 
sensor, a Leddar sensor, and a Point Grey camera used in this 
article as a backup sensor. The Leddar sensor is a solid-state 
LIDAR which we use to get information about the obstacles 
in front of the vehicle. These obstacles can be vehicles, pedes-
trians, bicyclists, etc. It is mainly used for emergency purposes, 
when there is an obstacle very close to the vehicle which 
creates a need to stop. It can be also used in low-speed car 
following applications such as adaptive cruise control (ACC) 
since its range is 50 m. For localization, GPS and LIDAR 
sensors were used. We use a differential GPS with Real-Time 
Kinematic (RTK) correction capability, which provides about 
2-5  cm accuracy when RTK correction signals are used. 
Also with the differential antennas, it provides heading infor-
mation even while the vehicle is stationary. LIDAR is used for 
both localization with SLAM and perception. It is a 16 channel 
Velodyne LIDAR PUCK (VLP-16) which is mounted on the 
top of the vehicle horizontally to guarantee a horizontal field 
of view (FoV) of 360 degrees with vertical FoV of 30 degrees 
from the surrounding environment. A 3D point cloud is 
generated at a frequency of 10 Hz. Theoretically, the LIDAR’s 
maximum detection range can reach up to 100 m depending 
on application, while in this work, detection range used for 
localization was set to 80 m to achieve satisfactory point cloud 
density and quality. A separate computer is used for processing 
the point cloud generated by LIDAR sensor to obtain location 
by SLAM. Computer specifications are mentioned in Real-
World Experiments section.

The element between the actuators and sensors is the 
dSPACE MicroAutoBox (MABx) ECU that is used for rapid 
prototyping of the low-level lateral and longitudinal direction 
controllers and basic decision-making algorithms created as 
Simulink models. Simulink coder is used to convert the model 
into embedded code, and the code is uploaded to the MABx 
device. The generated code can later be easily embedded in a 
series production level ECU at the end of the research and 
development phase.

Sensors send data to the MABx ECU with a means of 
communication specific to the sensor, like CAN or User 
Datagram Protocol (UDP) for most of our sensors. This data 
is fed to controllers running within the device. Controllers 
are created in the Simulink, and outputs of the controllers are 
connected to output blocks that correspond to input/output 
(I/O) ports of the MABx. These I/O ports are physically 
connected to actuators or drivers of actuators to provide 
 reference signal and achieve autonomous driving. The experi-
mental vehicle also has a dedicated short-range communica-
tion (DSRC) modem to communicate with other vehicles, 
infrastructure, and pedestrians with DSRC-enabled smart-
phones. For V2X communication, all messages are sent using 
the standard messages of the Society of Automotive Engineers 
(SAE) J2735 DSRC Message Set and use the standard commu-
nication rate of 10 Hz. Devices and actuators are powered 

through a 12V battery placed in the trunk of the vehicle. Some 
of the hardware discussed in this section is shown in Figure 2.

Vehicle Dynamics Model
The vehicle model and path following algorithm used are 
presented briefly in this and the following section. The lateral 
dynamics and path tracking error model is illustrated in 
Figure 3 and given in state space form as
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where β is side slip angle, r is yaw rate, V is combination 
of lateral and longitudinal velocity of the vehicle body, ∆Ψ is 

 FIGURE 2  Hardware on the vehicle.
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 FIGURE 3  Illustration of single track model.
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yaw angle relative to the tangent of the desired path, ls is the 
preview distance, and y is lateral deviation from desired path 
with respect to preview distance. The control input is the 
steering angle δf. ρref =1/R is the road curvature where R is the 
road radius. Other terms in the state space model are
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where m is the vehicle mass, J is the moment of inertia, μ 
is the road friction coefficient, Cf and Cr are the cornering 
stiffnesses, lf is the distance from the center of gravity (CG) 
of the vehicle to the front axle, and lr is the distance from the 
CG to the rear axle.

Path Tracking Model
The low-level automated driving tasks are lateral and longi-
tudinal control. The path determination and path tracking 
error computation are described briefly in this section. The 
path tracking model consists of two parts, which are offline 
generation of the path and online calculation of the error 
according to the generated path. These parts are explained in 
following subsections.

A. Offline Path Generation The path following algo-
rithm employs a predetermined path to be  provided to the 
AV to follow [11]. This map is generated from GPS waypoints 
where these points can be pulled from an online map or can 
be collected through recording during a priori manual driv-
ing. These data points are then divided into smaller groups 
named segments with equal number of data points for ease of 
the formulation. These segments are both used for curve fit-
ting and velocity profiling through the route. After dividing 
the road into segments, a process of fitting a third-order poly-
nomial is performed as
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3 2  Eq. (3)

where i represents the segment number and terms a, 
b, c, d are polynomial fit coefficients for the corresponding 
segment. Fitting the data points provides effective replica-
tion of the curvature that the road carries and also elimi-
nates the noise in the GPS data points. To provide a smooth 
transition from one segment to another by satisfying 
co ntinuity of the polynomials and their first derivatives in 
X and Y, we use
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The X and the Y points derived from the GPS latitude 
and longitude data using a degree to meter conversion are 
fit using a single parameter λ, where λ is the variable for the 
fit which varies across each segment between 0 and 1, 
resulting in
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B. Error Calculation After the generation of path coef-
ficients, an error is calculated for the lateral controller to use 
as input. Heading and position of the vehicle are provided by 
means of localization, in this case either SLAM or GPS. Using 
these, the location of the car with respect to the path, in other 
words the deviation from the path, is calculated. This ap-
proach reduces both oscillations and steady-state lateral de-
viation compared to calculation with respect to position only. 
In order to find an equivalent distance parameter to add to 
the first component distance error, a preview distance ls is de-
fined. Then, the error becomes

 y h ls= + ( )sin Dy  Eq. (6)

where ∆𝜓 is the net angular difference of heading of the 
vehicle from the heading tangent to the desired path and y is 
the total error of the vehicle computed at preview distance ls 
as is illustrated in Figure 4.

Finally, error is fed to a robust PID controller which 
controls the actuation of steering of the vehicle.

SLAM Algorithm
The SLAM-based localization algorithm is presented in this 
section. In this study, ground plane is always assumed to 
be  flat, and hence only 2D mapping and localization are 
required, while z direction pose information in Cartesian 
coordinate system is not necessarily considered. In the 
following algorithm, the pose state vector (x, y, 𝜃)T, comprised 

 FIGURE 4  Illustration of error calculation.
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of 2D Cartesian coordinates and orientation angle, and thus 
three degrees of freedom (DOF), is used to represent the pose 
information for the low-speed autonomous shuttle. As has 
been presented, the 16 channel Velodyne LIDAR can provide 
3D point cloud including 360 degree FoV information of the 
surrounding environment. However, in this context, consid-
ering the constraint of the processor in this configuration, 
additional computational complexity will negatively affect the 
whole system in terms of real-time performance. Therefore, 
so as to obtain planar scan information, 3D point cloud is 
projected into 2D space.

Before the projection, ground noise as seen in Figure 5 
needs to be removed by building up occupancy height map 
(section A). Once the planar scan end points are obtained, 
scan matching process is used to align the current scan end 
points either to those in the last frame or to the built-up map 
in order to derive the pose transformation of the shuttle. A 
more reliable and accurate optimization framework inspired 
by Hector SLAM [5] is imposed for the scan matching 
process, where more reasonable stop criteria are also intro-
duced (section B).

A. Ground Noise Removal and Projection Occu-
pancy height map is built up for ground noise removal. The 
LIDAR position is selected as the origin, and the Cartesian 
coordinate system is built with the x-y plane representing the 
ground plane and the z-axis being vertical to it. As shown in 
Figure 6, from a top-down view, we divide the x-y plane into 
many square cells of equal size. In this work, cell size is set to 
0.2  m × 0.2  m. For each of the 3D points Pi = (xi, yi, zi)T, 
we can find a cell Cj that it belongs to. Subsequently, for each 
of the cells Cj by comparing the heights of the points to a 
threshold hthres (set to 0.3 m in this work), if

 z z hj j thresmax, min,- £  Eq. (7)

then this cell is defined as not occupied or comprised of 
ground noise and thus left as empty. If

 z z hj j thresmax, min,- ³  Eq. (8)

then this cell is defined as occupied and all the 3D points 
included in it are remained for further projection.

In the projection step, polar coordinate system is used to 
represent the position of each scan end point in 2D plane. For 
each 3D point Pi, its angular position in x-y plane can 
be expressed as

 a i i iatan y x= ( )2 ,  Eq. (9)

where atan2 is four-quadrant inverse tangent and hence 
𝛼𝑖 ∈ [−𝜋, 𝜋]. The range of the 2D scan corresponding to the 
3D point Pi can be expressed as

 range x yi i i= +2 2  Eq. (10)

Note that there can be more than one projected 2D scan 
point in the same direction with different ranges. The ultimate 
range of 2D scan end point is the smallest range in that direc-
tion. Therefore, every projected 2D scan beams with their asso-
ciated scan end points can be identified by angular positions, 
as shown in Figure 7.

B. Map Generation and Scan Matching In this work, 
the same map access methodology as [5] is employed, which 
can provide an effective solution to the accuracy limitation 
caused by discrete property of occupancy grid maps.

Due to the high accuracy and frequency of modern 
LIDAR, iterative optimization algorithms are now possible 
to minimize the error between obtained scan end points and 
built-up maps, delivering the optimal alignment in the scan 
matching step. In this work, instead of Gauss-Newton opti-
mization performed in Hector SLAM [5], the Levenberg-
Marquardt algorithm [12] is applied to provide faster conver-
gence for the same accuracy compared with Gauss-Newton 

 FIGURE 5  Raw 3D point cloud with ground noise.
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 FIGURE 6  Occupancy height map. Cj is one of the cells. 
Height of every cell is determined by the maximum height 
difference in that cell.
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optimization, which can tremendously benefit the real-time 
system on autonomous shuttles. Given the generated map 
occupancy value M(Pm) corresponding to the continuous 
map point location Pm = (xm, ym)T, our goal is to find the rigid 
transformation 𝜉 = (px, py, 𝜃)T which minimizes the overall 
summation of occupancy error between the current scan 
end points and the most updated map; consequently, the 
objective function and desired rigid transformation can 
be defined as

 E M S
i

n
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åmin
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1 x  Eq. (11)
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where n is the number of scan end points and si = (si,x, si,y)T 
is the world coordinate of the transformed scan end point. 
Si(𝜉) is a function of 𝜉 that transforms scan end point coordi-
nate into world system, expressed as
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and 𝑀(Si(𝜉)) ∈ [0,1] is the occupancy value at the location 
given by Si(𝜉). Once this is performed, the optimal transforma-
tion that best aligns the current frame with the most updated 
map points is obtained.

This quadratic cost function 𝐸 can be  solved by 
Levenberg-Marquardt algorithm [13] efficiently. Starting 
from an initial estimation of the transformation, for 
example, the optimal transformation provided in last 
frame, 𝜉0, in every iteration, a transformation update 𝛥𝜉 is 
added to the accumulated transformation so far, 𝜉, so as to 
move forward to the minimum point and further minimize 

the function. Intuitively, by each iteration step, the cost 
function is closer to 0:
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By replacing M(Si(𝜉 + 𝛥𝜉)) with its Taylor series expan-
sion, we obtain
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By letting the partial derivative with respect to 𝛥𝜉 equal 
to 0
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According to Levenberg-Marquardt algorithm, the 
optimal solution for 𝛥𝜉 can be determined by
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where wi is weight associated with point Pi, which mainly 
down weights the low-quality scan end points with big error 
and hence enhances robustness against noise [14]. 𝜆 is a 
damping parameter (initially set to 0.01 in this work), I is 
identity matrix, and H is weighted approximate Hessian 
matrix, defined by
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By solving ∆𝜉, 𝜉 is updated by

 x x x¬ + D  Eq. (19)

and that makes 𝜉 iteratively move forward to the optimal 
transformation 𝜉∗.

In contrast to the practical implementation in Hector 
SLAM [5], where fixed iteration step setting is employed to 
evaluate the Gauss-Newton optimization, in addition to 
setting a maximum iteration step (10 in this work), we hereby 
propose a more reasonable stop condition before reaching the 
maximum iteration step, which has been proven to ensure 
sufficient convergence while avoiding unnecessary iterations 
caused by oscillation around the optimal solution:

 Dx e<  Eq. (20)

where operator ‖∙‖ denotes Frobenius norm and 𝜀 is a 
parameter for threshold and is set to 0.001 in this work. 𝐸k is 
the cost function in the 𝑘th iteration step.

 FIGURE 7  Projected 2D scan end points.

©
 S

A
E 

In
te

rn
at

io
na

l

Downloaded from SAE International by Bowen Wen, Wednesday, January 02, 2019



 Wen et al. / SAE Int. J. of CAV / Volume 1, Issue 2, 2018 59

© 2018 SAE International. All Rights Reserved.

Real-World Experiments
We conducted extensive experimental validations of our 
system including offline SLAM system test on collected data 
as well as real-time field experiment in the area around the 
initial AV pilot test route, a small segment in an underserved 
area of the campus designated by the Ohio State University, 
as shown in Figure 8. All the algorithms relevant to LIDAR 
data processing and SLAM as described above are imple-
mented in C++ because of its efficiency of real-time perfor-
mance. Performances are evaluated between the SLAM system 
proposed in [5] and the extended version proposed in this 
article. Traditional path following experiment result based on 
high-accuracy GPS similar to the previous work is compared 
with this innovative SLAM-based path following experiment 
result, demonstrating the feasibility and effectiveness of this 
compounded system. Note that randomness is inevitably 
introduced by probabilistic occupancy grid map model in the 

SLAM system. For this reason, the experiment results are 
reported based on the median performance of several runs.

Real-time SLAM algorithm is carried out with an 
I7-6700HQ (8 cores @ 2.60 GHz), NVIDIA Titan X (Pascal)/
PCIe/SSE2 and 4Gb RAM on the Robot Operating System 
(ROS) [15], an open-source operating system providing 
services designed for heterogeneous computer cluster in Linux 
environment. UDP communication is built up between ROS 
and MABx for localization information transfer. Regional 
localization information delivered by SLAM algorithm is sent 
to MABx for further decision-making and control strategy, 
for example, longitudinal or lateral control.

SLAM Evaluation
In order to quantitatively evaluate our proposed SLAM system 
against Hector SLAM, both SLAM systems are tested on the 
same LIDAR data collected around our lab, Car West. Due to 
the absence of “ground truth,” alignment error yielded in both 
algorithms is reported for comparison. Ideally, with sufficient 
accuracy, the alignment error (described in Equation 11) 
should be very small. However, inevitably introduced sensor 
noise and non-smooth approximation of the optimization 
model make the solution of pose estimation only able to 
approach real pose but never perfectly equivalent, and hence 
total alignment error always exists. Therefore, in the same 
context, the smaller the alignment error, the higher the 
accuracy that is achieved, and hereby we evaluate the perfor-
mance by comparing their alignment error and iterations 
implemented in each alignment, which can reflect their esti-
mation accuracy as well as their convergence speed. 
Considering that offline SLAM accuracy is similar to its real-
time accuracy, this comparison can effectively validate the 
overall performance of our proposed SLAM system against 
the Hector SLAM.

The ultimate map generated by our proposed SLAM system 
is overlapped with the same location obtained from Google 
Earth for comparison convenience as shown in Figure 9, where 
the map generated by our proposed SLAM is in shadow and red 
line is the test trajectory. It is important to note that the map 

 FIGURE 8  AV test route from Car West to Center for 
Automotive Research (CAR) (scale 1:8000).
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 FIGURE 9  Generated map overlapped with Google Earth.
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from Google Earth is not strictly a top-down view. Thus, here 
a minor shift is necessarily used to keep the edges of the mapped 
buildings consistent with their actual corresponding edges in 
Google Earth. In this experiment, raw LIDAR data is initially 
collected by VLP-16 along the test trajectory which starts from 
the backyard of Car West, passing through an open field which 
is sufficiently challenging because of the limited landscapes for 
matching alignment and textureless wall. Another challenging 
part of this test trajectory is a sharp 180 degree turn in the front 
of the parking lot of the lab building, which demands fast 
convergence and robustness of the nonlinear optimization 
model implemented in the SLAM system.

Figure 10 shows both complete and regional localization 
estimation from the two SLAM systems along the test trajec-
tory. The smoother localization given by our proposed SLAM 
system with the integrated automated drive control systems 
can dramatically improve passenger comfort while taking a 
ride in the shuttle. Table 1 illustrates the average alignment 
error and average iteration steps required between the two 
SLAM systems. It can be clearly observed that in some runs, 
our proposed SLAM can effectively reduce the alignment error 
to a relatively lower level despite the fact that in almost half 
of the runs the benefit is not distinct. Results of the average 
alignment error from Table 1 can further prove this property.

This can be attributed to the defect of this optimization-
based SLAM system where global minimum cannot be guar-
anteed and scan end point outliers can inevitably introduce 
noise to the system. Therefore, a reliable preprocessing model 
of the scan end points is desired as an extension to this frame-
work, which may be  an interesting topic in future work. 
Although in our proposed SLAM system additional iteration 
steps are sacrificed for better alignment compared with Hector 
SLAM, in which the iteration step is set to a fixed value and 
naturally convergence cannot be guaranteed, the increased 
iteration step is still in an acceptable range for real-time 
performance according to our real-time experiments.

Real-Time SLAM Path 
Following Performance
In addition to quantitative evaluation of our proposed SLAM 
system, various real-world experiments are also conducted to 
validate its feasibility and adaptivity of integration with the 
control system. We first manually drive the shuttle along the 
predetermined trajectory around our lab building, as shown 
in Figure 11, to collect GPS points, from which the desired 
path is then generated for path following reference.

Figures 12 and 13 show the actual path following trajec-
tory performed by our proposed SLAM system and RTK GPS 
separately compared with the desired path. The coordinate of 
starting position is set to the origin in the following plots for 
comparison convenience. It can be observed that similar to 
GPS, SLAM-based path following can be achieved comparable 
to GPS-based result, though with occasional minor error, 
which again proved the supplemental functionality of our 
proposed SLAM system in GPS not accessible cases. Figure 14 
shows the root-mean-square error (RMSE) along the whole 
path following trajectory performed by SLAM compared with 
the same experiment setting but performed by differential 
GPS. The shuttle speed of both path following approaches is 
kept at an average value of 12 km/h. As can be seen from the 
experimental results, conventional path following that relies 
on highly accurate differential GPS has the expected perfor-
mance with appropriate lateral controller design. The overall 

TABLE 1 Performance comparison between our proposed 
SLAM with Hector SLAM. The results are average values over 
10 simulations. Alignment error is accumulated error of 
occupancy value, which is dimensionless. Number of iterations 
is number of iterations to converge.

Proposed SLAM Hector SLAM
Alignment error 78.759 84.107

Number of iterations 6.557 3.400
© SAE International

 FIGURE 11  Trajectory on satellite image.
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 FIGURE 10  Trajectory comparison between our proposed 
SLAM (blue) and Hector SLAM (red).
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performance of GPS is better than SLAM, but SLAM-based 
path following tends to have even smaller RMSE at some 
regions, for example, at points of 0.7 × 105, 1.5 × 105, and 
1.8 × 105 which are at the corners of the trajectory. The fact 
suggests that this SLAM system can provide precise estima-
tion of the shuttle orientation while there may exist some delay 
or inaccuracy in the orientation angle provided by differential 
GPS, which is computed based on compass. It demonstrates 
that localization and perception system that purely relies on 
LIDAR can supplement the cases when GPS is not available 
or a lower cost, and hence lower accuracy GPS is desirable for 
intelligent shuttles.

HiL Studies
HiL setup is crucial for faster development of controllers and 
algorithms, since it provides a realistic virtual proving ground 
before the implementation and deployment phases. To create 
this realistic virtual proving ground, real-world scenarios 
should be replicated with as many aspects as possible. This 
includes emulation of sensors, addition of traffic, addition of 
hardware, and replication of real-world routes. For this article, 
the planned actual real-world AV shuttle deployment route is 
selected as a virtual proving ground.

Equipment and Setup
The HiL setup is constructed with hardware as close as possible 
to real-world case. Therefore, MABx is used as a main 
controller. This ECU is also the device we use in our AV as 
low-level controller, which is mentioned in the Hardware and 
Platform section. Since we  already develop autonomous 
driving algorithms which run within this device during the 
HiL development, it allows us to directly implement the algo-
rithms and controllers that we developed inside the HiL simu-
lation to a real AV. MABx is also connected to a DSRC modem 
similar to the real-world case in the HiL simulator. Through 
this modem, it receives the V2X data that is published for the 
vehicles and infrastructure within the simulation. Again, 
similar to the real-world case, it is connected to the SCALEXIO 
computer which mimics the actual vehicle through the 
Controller Area Network (CAN) bus. The MABx thinks it is 
connected to a real vehicle while receiving the ego vehicle 
information from CAN bus and publishing actuation 
commands for steering, brake, and throttle through the 
CAN bus.

These commands are picked up by the SCALEXIO real-
time vehicle, traffic, and sensor simulator. This simulator runs 
a Simulink model with CarSim vehicle dynamics. Vehicle 
model parameters inside CarSim are validated through vehicle 
dynamics experiments previously performed on the real 
vehicle. Therefore, vehicle dynamics simulation provides 
results very close to the real world. While simulating high-
fidelity vehicle dynamics for ego vehicle, it can also simulate 
roads, sensors, and infrastructure through the capabilities of 

 FIGURE 12  Desired path compared to our proposed SLAM 
path following trajectory.
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 FIGURE 13  Desired path compared to GPS path 
following trajectory.
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 FIGURE 14  RMSE in lateral direction comparison between 
our proposed SLAM-based path following and GPS-based 
path following.
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CarSim. This feature provides significant advantage since it 
allows us to create numerous test scenarios which have appli-
cations in real-world autonomous driving. It is also connected 
to another DSRC modem that publishes V2X information for 
other vehicles and infrastructure that exist inside the simula-
tion environment. All of the DSRC message packets are sent 
within a standard format obtained from SAE J2735 DSRC 
Message Set and using the standard communication rate of 
10 Hz. Overall illustration of the HiL setup and communica-
tion between components are shown in Figure 15.

With this HiL setup, we are able to test numerous kinds 
of different scenarios involving other vehicles, pedestrians, 
and road structures, which involve V2X communication. 
Moreover, we are able to test our controllers and autonomous 
driving algorithms and do improvements on them before 
starting road testing.

In this study, the HiL setup discussed above is used to 
provide a virtual proving ground for algorithm and controller 
development before real-world deployment of the autonomous 
shuttle. A test scenario is created based on a planned real-
world deployment route, which is explained within the next 
section, followed by discussion of the simulation results.

Test Scenario
A replication of the real-world route AV pilot test route was 
created inside CarSim for autonomous driving simulation. 
This route starts from the road in front of the parking lot of 
our research lab building (Car West) and ends about 0.7 miles 
down the road in front of our main research center (CAR). A 
traffic light is placed on the intersection and vehicle traffic is 
generated within CarSim for main route. Buildings are also 
created as a representation of real ones and placed according 
to their real-world positions. A top-down view of the road, 
which is rendered in CarSim, is shown in Figure 16.

The path to be followed is generated from the GPS points 
on the road, and vehicle is set to autonomously drive on this 
path, in other words, to follow the route while making deci-
sions according to the situations it comes across during the 
drive. GPS and Leddar sensors are virtually simulated in 

CarSim software, while DSRC messages are received through 
real hardware. Therefore, the virtual simulation vehicle is 
equipped with a real DSRC radio, soft GPS, and a soft Leddar 
sensor. In this specific scenario, DSRC radio is mainly used 
for determination of the traffic light state in the intersection. 
Leddar sensor is utilized for detection of the distance between 
ego vehicle and preceding vehicle. Since LIDAR emulation is 
currently not available as a solution within CarSim, work is 
still in progress to emulate or simulate LIDAR sensor which 
provides a 3D point cloud data to simulate LIDAR-based algo-
rithms such as SLAM in the simulator.

A. Decision-Making The vehicle was commanded to 
follow the route while handling some of the situations it may 
come across. For this purpose, a simple decision-making 
strategy is created with three main states. This decision-
making strategy is still work in progress and currently does 
not take all of the possible real-world cases into account. In-
stead, the scenario is slightly simplified with respect to real-
world conditions in order to use a noncomplex decision-
making strategy. These simplifications include the placement 
of the starting and end position onto the main road and re-
moval of the intersection cross traffic. These simplifications 
will be removed in further study.

The developed decision-making strategy consists of three 
main states. In cruise control (CC) state, the vehicle is given 
a velocity profile to follow as a longitudinal control strategy. 
The vehicle follows the route while traveling at the desired 
speed which is decided by this velocity profile, according to 
the map segment the vehicle is currently in. With this velocity 
profile, the vehicle can slow down or speed up when neces-
sary, according to the road portion it is currently in, and 
therefore can safely approach intersections, sharp curved 
turns, and traffic lights and obey traffic speed limits. While 
carrying out path following in CC state, it constantly checks 
for any DSRC messages. In case there is any traffic light 
nearby on path, according to the state of the light, it can go 
to stop state or continue. Furthermore, by making use of the 
Leddar sensor information, the vehicle can determine if there 
is a preceding vehicle, and according to the distance, it goes 

 FIGURE 16  Top-down view of Car West-CAR AV test route.
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 FIGURE 15  HiL equipment and communication.

©
 S

A
E 

In
te

rn
at

io
na

l

Downloaded from SAE International by Bowen Wen, Wednesday, January 02, 2019



 Wen et al. / SAE Int. J. of CAV / Volume 1, Issue 2, 2018 63

© 2018 SAE International. All Rights Reserved.

to ACC state or Cooperative Adaptive Cruise Control (CACC) 
state in the case of a communicating preceding vehicle for 
car following. In this state, the vehicle keeps a safe time gap 
with the preceding vehicle. The  flowchart for the simple 
decision-making used is shown in Figure 17.

HiL Simulation Results
After route is constructed in the simulation environment, path 
following and decision-making algorithms that are explained 
in previous sections were implemented in HiL simulation 
environment. Route that is constructed in CarSim environ-
ment is shown in Figure 18 where X and Y scales are different 
for better visibility.

With the road constructed and algorithms implemented, 
a velocity profile was created for vehicle to follow when it is 
on CC mode, which is shown in Figure 19. Velocity profile is 
created according to the corresponding road segments where 
long straight road segments have higher speed and curves and 
intersections have lower speed. While following the velocity 
profile with longitudinal controller and following the path 
with lateral controller described in previous sections, vehicle 
also takes decisions according to the flowchart shown in 
Figure 17. For example, in case of any other vehicle coming 
in front, the vehicle goes to ACC mode to adapt the speed of 
preceding vehicle and keep the distance, disregarding the 
velocity profile.

With all the implementation and preparation of the simu-
lation environment completed, HiL simulation was conducted 
to see the effectiveness of the overall structure. After the 

simulation, recorded vehicle velocity, vehicle decision state 
(stop/ACC/CC), and traffic light state (green/red) were plotted 
with respect to time as shown in Figure 20.

As seen in Figure 20, the vehicle follows the speed profile 
in CC mode while doing autonomous path following. After 
some time, starting around 90th second, also marked as gray 
ACC area, it comes across a non-communicating preceding 
vehicle which travels at a slower velocity. Instead of following 
the velocity profile, AV goes to ACC mode and slows down 
to adapt to the speed and keep the distance between itself 
and the preceding vehicle constant. This behavior can 
be confirmed by comparing the velocity profile (30 km/h) 
with vehicle velocity at that time phase (around 15 km/h). 
Around 125th second, it comes close to the intersection where 
there is a traffic light which is at red signal state and it stops. 
It waits until the light is green and then continues its way. 

 FIGURE 17  Decision-making flowchart.
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 FIGURE 18  Car West to CAR route constructed in CarSim.
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 FIGURE 19  Velocity profile with respect to segment.
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 FIGURE 20  Vehicle velocity, behavior, and traffic light state 
with respect to simulation time.
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This behavior can also be confirmed by looking at the velocity 
graph and decision-making graph where it is marked as red 
and green areas and the traffic light state graph in Figure 20.

After passing the traffic light, it comes closer to the desti-
nation, slows down, and stops. The trajectory of the vehicle is 
also plotted on a satellite image and shown in Figure 21. It is 
seen that the vehicle is able to follow the route and autono-
mously handle dynamic driving tasks it can come across while 
traveling through this route. Some frames from the simulation 
are shown in Figure 22, while the vehicle is doing 
autonomous driving.

Summary/Conclusion
This article presented preliminary work for an AV shuttle 
deployment in the AV pilot test route of the Ohio State 
University. GPS and LIDAR SLAM are both used for localiza-
tion and path generation. Since GPS-based localization and 
path following were presented in our earlier work, this article 
concentrated on a LIDAR SLAM system which is inherited 
from the Hector SLAM framework and based on the Levenberg-
Marquardt algorithm. It was demonstrated that this LIDAR 
SLAM algorithm can be used for self-localization of our low-
speed autonomous shuttle. Extensive experiments were 
conducted for offline SLAM performance evaluation as well as 
real-world experiments for path following in a parking lot for 
safety. The proposed SLAM system was compared with the 
state-of-the-art 2D SLAM approach especially in terms of scan 
alignment accuracy and seen to provide dynamically reason-
able pose estimation. As a prerequisite to testing autonomous 
driving on the actual AV pilot test route, this route was repli-
cated in our HiL simulator for developing and testing low-level 
controllers and decision-making logic. GPS and Leddar 
sensors, traffic, and the traffic light were emulated in the HiL 
simulator, while the low-level control ECU and the DSRC 
radios used for V2I and V2V communication were real 
hardware. LIDAR sensor emulation work is in progress and 
will allow us to implement LIDAR-based algorithms for both 
localization, for example, SLAM, and obstacle detection and 
classification within the HiL simulator.

Contact Information
Automated Driving Lab
930 Kinnear Rd
Columbus, OH, 43212
guvenc.1@osu.edu
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 FIGURE 22  Simulation frames while the vehicle is doing 
ACC (1) and stopping at traffic light (2).
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 FIGURE 21  Vehicle trajectory on satellite image.

©
 S

A
E 

In
te

rn
at

io
na

l

Downloaded from SAE International by Bowen Wen, Wednesday, January 02, 2019

guvenc.1@osu.edu


© 2018 SAE International. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE International.

Positions and opinions advanced in this work are those of the author(s) and not necessarily those of SAE International. Responsibility for the content of the work lies 
solely with the author(s).

 Wen et al. / SAE Int. J. of CAV / Volume 1, Issue 2, 2018 65

Definitions/Abbreviations
AV - Autonomous vehicle
HiL - Hardware-in-the-loop
IMU - Inertial measurement unit
SLAM - Simultaneous localization and mapping
LIDAR - Light detection and ranging
V2X - Vehicle to everything
DSRC - Dedicated short-range communication
GPS - Global Positioning Systems
ECU - Electronic control unit
SAE - Society of Automotive Engineers
RTK - Real-Time Kinematic
UDP - User Datagram Protocol
DOF - Degrees of freedom
PC - Personal Computer
FoV - Field of view
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Abstract 

In this manuscript a design and implementation of CACC on an 
autonomous vehicle platform (2017 Ford Fusion) is presented. The 
developed CACC controls the intervehicle distance between the target 
vehicle and ego vehicle using a feedforward PD controller. In this 
design the feedforward information is the acceleration of the target 
vehicle which is communicated through Dedicated Short-Range 
Communication (DSRC) modem. The manuscript explains the 
detailed architecture of the designed CACC with used hardware and 
methods for the both simulation and experiments. Also, an approach 
to overcome detection failures at the curved roads is presented to 
improve overall quality of the designed CACC system. As a result, the 
initial simulation and experimental results with the designed CACC 
system is presented in the paper. The presented results indicate that 
CACC improves the car following performance of the ego vehicle as 
compared to the classical Adaptive Cruise Controller.   

Introduction 

With the recent advancements in automotive sensors, cars are 
becoming more autonomous making use of these new technologies. 
The Advanced Driver Assistant systems such as Adaptive Cruise 
Control (ACC) system do not only ensure the safety but also increase 
the comfort of travel. A well-known longitudinal control method, 
Cooperative Adaptive Cruise Control (CACC), which is an ACC 
system supported by the Dedicated Short-Range Radio 
Communication (DSRC) technology that allows Vehicle-to-Vehicle 
(V2V) communication, enables lower time headway. Reducing the 
time headway distance between two vehicles can significantly increase 
the capacity of the road. Also, platooning multiple vehicles has the 
potential to improve the fuel efficiency of the vehicles by avoiding 
unnecessary accelerations and decelerations, and reducing the air drag. 
Motivated by these advantages, in this manuscript, we will present a 
design and implementation of CACC on an autonomous vehicle 
platform (2017 Ford Fusion) with initial experimental results. 

The designed CACC maintains the desired constant-time headway 
better than the well-known Adaptive Cruise Control (ACC). Thus, it is 
possible to reduce the headway for the CACC.  In truck platooning 
smaller time gap results in higher fuel efficiencies by reducing the air 
drag resistance. Similarly reducing the headway time would increase 
the capacity of the highways significantly by improving the traffic flow 
rate [1]. Motivated by these advantages of CACC over ACC, in this 
manuscript, a Cooperative Adaptive Cruise Controller design process 
for the autonomous vehicle platform will be explained. 

Adaptive Cruise Controllers are already being used in the production 
vehicles under different names. A comprehensive literature review for 
ACC systems is done in [2]. Adaptive Cruise Controllers aims to 
maintain the time-headway constant while car following without 
breaking the string stability. However, they cannot use low time-
headway values since it would result in rear end collision in case of 
sudden speed changes in the traffic (shock-waves) [3]. Therefore, in 
ACC a small time gap causes string instability by amplifying the 
disturbances in the upstream direction. Using the DSRC 
communication, one can improve the car following performance by 
reducing the time-headway without breaking the string stability [4]. 
This car-following model is called Cooperative Adaptive Cruise 
Control. Some of the earlier work on CACC can be seen in [4- 10]. In 
[4] authors presented their CACC design methodology by considering 
the string stability requirements and they experimentally validated 
their design. One of the early implementations of CACC is done under 
California PATH program [5-6]. In 2011 several research institutes 
formed a CACC platoon at Grand Cooperative Driving Challenge 
(GCDC). Two of the CACC implementations in this challenge can be 
seen in [7-8]. In [9] authors presented their design for car-following 
with CACC and approaching maneuver controller. In [10] authors 
presented multi vehicle look ahead CACC simulation results which 
shows that the multi vehicle look ahead in CACC improves the 
performance of CACC. In [11-13] the authors presented how to handle 
the adversarial environment conditions.   

The rest of the paper organized as follows. Next section will explain 
the designed CACC structure. Following that the simulation 
environment with target vehicle modeling and simulation results for 
two vehicle car following scenario will be presented. Then, the 
experimental vehicle set up with the explanation of sensors will be 
explained. In the Perception section, in-lane vehicle detection 
algorithm will be explained. Finally, the manuscript will be concluded 
with experimental results and their comparison with simulation results. 

CACC Structure 

The control structure of the designed CACC system is shown in the 
block diagram in Figure 1. The designed control system is similar to 
the one designed and shown to be string -stable in [4]. Since the vehicle 
does not have built-in ACC the low-level controller is designed as a 
gain-scheduled PI controller. As an upper controller, a PD controller 
with a feed-forward controller is used. To sustain the string stability a 
constant time headway spacing policy is employed [14]. The input of 
the feedforward controller is the acceleration of the target vehicle 
which is transmitted through DRSC radio communication. 
Formulation of the spacing policy is given in Equations 1-2. Where 𝑙𝑙 
is the length of the target vehicle, 𝑥𝑥1 and 𝑥𝑥2are the position of the target 
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and ego vehicle, 𝑇𝑇ℎ𝑤𝑤 is the desired time-headway and 𝑉𝑉ℎ𝑜𝑜𝑜𝑜𝑜𝑜 is the 
speed of the host vehicle. The designed PD controller minimizes the 
spacing error e which is given in Equation 3. Gains of the PD controller 
chosen as 𝑘𝑘𝑃𝑃 = 𝑘𝑘𝐷𝐷2 = 𝑤𝑤𝐾𝐾2 where the 𝑤𝑤𝐾𝐾 is chosen close to the 
bandwidth of the low-level closed-loop bandwidth. 

𝛥𝛥𝑥𝑥 = 𝑥𝑥1 − 𝑥𝑥2 − 𝑙𝑙                (1) 

𝛥𝛥𝑥𝑥𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑉𝑉ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑇𝑇ℎ𝑤𝑤 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑              (2) 

 𝑑𝑑 = 𝛥𝛥𝑥𝑥 − 𝛥𝛥𝑥𝑥𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑               (3) 

Feedforward controller is designed in the same way where it was 
designed in [8]. Formulation of the feedforward controller is given in 
Equation 4, where 1/𝜏𝜏 represents the desired closed-loop bandwidth.  

𝐹𝐹 = 𝜏𝜏𝑜𝑜+1
𝑇𝑇ℎ𝑤𝑤𝑜𝑜+1

                 (4) 

 

Figure 1. Cooperative Adaptive Cruise Controller (CACC) block diagram.  

 

Simulation Environment 

Development of the initial CACC model is done in CarSim-Matlab co-
simulation environment [15]. CarSim is a vehicle simulation 
environment with the capability of simulating the dynamics of the 
vehicle. It can also simulate the target vehicle as a kinematic object. In 
the simulation, target vehicle will be driven by an Intelligent Driver 
model. By changing the desired speed and/or acceleration limits for the 
target vehicle, one can create different driving scenarios using 
Intelligent Driver Model (IDM) [16]. The formulation of the IDM is 
given in Equations 5-7. 

�̇�𝑥𝛼𝛼 =
𝑠𝑠𝑥𝑥𝛼𝛼
𝑠𝑠𝑠𝑠 = 𝑣𝑣𝛼𝛼 

 (5) 

�̇�𝑣𝛼𝛼 =
𝑠𝑠𝑣𝑣𝛼𝛼
𝑠𝑠𝑠𝑠 = 𝑠𝑠 �1 − �

𝑣𝑣𝑎𝑎
𝑣𝑣0
�
𝛿𝛿
− �

𝑠𝑠∗(𝑣𝑣𝑎𝑎,∆𝑣𝑣𝑎𝑎)
𝑠𝑠𝑎𝑎

�
2

� 

(6) 

𝑠𝑠∗(𝑣𝑣𝑎𝑎,∆𝑣𝑣𝑎𝑎) = 𝑠𝑠0 + 𝑣𝑣𝑎𝑎𝑇𝑇 +
𝑣𝑣𝑎𝑎∆𝑣𝑣𝑎𝑎
2√𝑠𝑠𝑎𝑎

  

(7) 
 

where: 
𝑣𝑣0: the velocity the vehicle would drive at in free traffic 
𝑠𝑠0: a minimum desired net distance  
𝑇𝑇: the minimum possible time to the vehicle in front 
𝑠𝑠: the maximum vehicle acceleration 
𝑎𝑎: (a positive number) the maximum vehicle breaking m/s2 
 

The IDM car-following model is commonly used in traffic simulations 
for simulating driving behavior of the human driver in traffic. In this 
case, the Intelligent driver model is used to model a human driver for 
the target vehicle. In CarSim one can also create realistic roads by 
importing GPS trajectory of the rote. The simulation of the radar and 
camera is also possible by using the virtual sensors offered in CarSim. 
Figure 2 shows the visualization of the car following scenario 
simulation with a radar field of view. 

 

Figure 2. CarSim CACC Simulation visualization.  

After creating the simulation environment which replicates the 
structure shown in Figure 1 simulations run for two different scenarios: 
ACC and CACC. As the initial evaluation, in the created simulation 
environment target vehicle first accelerates to a set speed of 20 km/h 
then it changes set speed to 25km/h and finally it stops. In the 
simulations, the ego vehicle follows the target vehicle with 1 sec time 
headway. As it can be seen from simulation results in Figure 3 CACC 
follows the target vehicle much better. Although both of the speed 
controllers maintain the time headway, CACC time headway follows 
the set value (1 second) more accurately. Simulation results with 0.6s 
is overlayered over the experimental results. 

In another scenario, in order to show the performance of the CACC in 
more realistic scenario the target vehicle speed, acceleration profiles 
over time is collected by driving the experimental vehicle in an urban 
route environment. By replaying the recorded data during the 
simulation, the real world driving experience with a sudden 
acceleration and braking behavior of the target vehicle in an urban 
environment is simulated. Similar to the previous simulation results 
CACC follows the desired time headway of 0.6s much better as 
compared to ACC (Figure 4).  Especially for sudden changes in speed 
of the target vehicle, CACC responds much better and keeps the 
desired spacing more accurately.  

 



Page 3 of 7 

10/25/2018 

 

Figure 3. CarSim ACC and CACC simulation results for 1 second time 
headway with an IDM driven target vehicle.  

 

Figure 4. CarSim ACC and CACC simulation results for 0.6 second time 
headway with a human driven target vehicle data.  

 

Experimental Vehicle  

 
Figure 5. Autonomous vehicle development platform of Automated Driving 
Lab, at The Ohio State University. 

For the experiments, a 2017 Ford Fusion with drive by wire capability 
is used (Figure 5).  Since the vehicle is not equipped with an ACC the 
throttle and brake actuation are realized through CAN bus messages. 
For the longitudinal motion measurements, speed and acceleration 
measurements on the vehicle CAN bus is used.  

As the electronic control unit, a dSpace MicroAutoBox II (Figure 6) is 
employed due to its easy prototyping property with high-performance 
real-time system implementation capabilities. As it can be seen from 
the block diagram every equipment in the vehicle is connected to the 
MicroAutoBox controller. All the measurements coming from the 
sensors, vehicle CAN bus are processed in the controller and based on 
the embedded algorithm throttle and brake commands are sent to the 
vehicle. All the algorithms and the data parsing coming from the 
sensors are programmed using MATLAB Simulink blocks and they 
are embedded into the MicroAutoBox controller. As a user interface a 
portable computer with ControlDesk application is used. 

To detect the objects on the road the vehicle is equipped with a 
76.5GHz Delphi forward looking radar which can track up to 64 
objects and give their positions and relative velocity information. The 
radar is a combination of both long and middle range radars. Radar is 
connected to both MicroAutoBox and the laptop. While the data 
coming from the radar is parsed and processed in the MicroAutoBox, 
detections can be seen in real time for diagnosis purposes using 
DataView software. In order to visually validate the radar detections, 
a forward-looking webcam is connected to the laptop. DataView 
software can overlay the detections to the video stream acquired from 
this webcam (Figure 7). 

A black and white monocular smart camera from Mobileye (Figure 6) 
is used to detect lane lines on the road to determine in lane vehicles 
among detected targets via radar. This camera can detect the lane line 
markers on the road and provides the lane line information in the form 
of 3rd order polynomials. Coefficients of the lane line polynomials are 
available on the CAN bus alongside the road curvature information. 

The test vehicle is also equipped with two Denso WSU (Wireless 
Safety Unit) 5900 DSRC modems to communicate with the target 
vehicle. In the CACC scenario target vehicle broadcast its acceleration 
alongside the Basic Safety Message (BSM) [17]. While the first 
modem is receiving the target vehicle acceleration, the second modem 
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on the vehicle is used to transmit the acceleration of the virtual target 
vehicle. 

 
Figure 6. CACC experimental vehicle hardware block diagram.  

 

 

Figure 7. Sample Radar Detection Visualization in real time.  

Perception 

A radar is used to detect the positions of the target vehicles. The 
downside of this method the radar only provides the position and speed 
information of the detected objects. Since the radar does not know the 
lane information on the road, it cannot distinguish the vehicles which 
are in the lane and which are not. From the Radar, an ACC target 
information is available, which is selected by the radar using the speed 
of the vehicle, steering angle, and yaw rate information of the ego 
vehicle.  Although most of the time this target detection is valid, since 

the exact algorithm for choosing the ACC target vehicle is not known 
and availability of the ACC target depends on the algorithm used in 
the Radar we are forced to develop another method to detect the 
vehicles in the lane.  

According to Zhang et.al [18], there are two main difficulties to detect 
the target vehicle using radar. First, differentiation of the lane change 
or curve entry/exit behavior is challenging. Second, when the vehicle 
in the next lane goes into the curvature it can be misclassified as in the 
host lane. To overcome these difficulties a camera and radar are used 
together. While the lane boundary information comes from the camera, 
objects detections are acquired from the radar. For each time step, 
acquired detections are sorted by their longitudinal range. Then each 
detected object is checked to see whether it is in the host lane or not by 
comparing its lateral position with respect to the lane boundaries.  
Block diagram of the system can be seen in Figure 8. One should note 
that if at least one of the lane lines are not visible to the camera, it is 
required to create the lane boundaries synthetically. If only one of the 
lane lines is available, the other lane boundary is created using the 
available lane boundary information and the lane width. If both of the 
lane lines are not available, it is assumed that the vehicle moves 
straight, and the target object is searched within a window where the 
width of the window is equal to the lane width.  

 
Figure 8. In lane vehicle detection structure with camera and radar 
combination.   

Radar can provide the positions of the detected objects in polar 
coordinates (Figure 9). The measurements acquired from the radar for 
each object are listed with their range (ri), bearing angle (αi) parameters 
and range rate. These coordinates are converted into the Cartesian 
coordinate system using basic trigonometric equations. Since the radar 
is placed in front of the front bumper and the origin of the radar 
coordinate system is chosen as the center of the radar, measurements 
acquired from the radar are converted to the longitudinal distance (xi) 
and the lateral distance (yi) of the target objects from the center of the 
front bumper (Equations 8 and 9).   



Page 5 of 7 

10/25/2018 

 

Figure 9. Radar detection coordinate system. 

𝐿𝐿𝐿𝐿𝑠𝑠𝐿𝐿𝑠𝑠𝑠𝑠𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑 = 𝑥𝑥𝑑𝑑 = 𝑟𝑟𝑑𝑑 ∗ cos(𝛼𝛼𝑑𝑑)   (8) 

𝐿𝐿𝑠𝑠𝑠𝑠𝑑𝑑𝑟𝑟𝑠𝑠𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑 = 𝑦𝑦𝑑𝑑 = 𝑟𝑟𝑑𝑑 ∗ sin(𝛼𝛼𝑑𝑑)    (9) 

The camera in the vehicle is centered at the top of the windshield.  It 
provides the lane line definitions as a third order polynomial in the 
camera coordinate system, where the origin of the coordinate system 
is the location of the camera. The curve fitted to the left and right lanes 
are given in Equations 10 and 11 respectively. 

𝑦𝑦𝑙𝑙(𝑥𝑥) = 𝑠𝑠0𝑙𝑙 + 𝑠𝑠1𝑙𝑙 ∗ 𝑥𝑥 + 𝑠𝑠2𝑙𝑙 ∗ 𝑥𝑥2 + 𝑠𝑠3𝑙𝑙 ∗ 𝑥𝑥3  (10) 

𝑦𝑦𝑑𝑑(𝑥𝑥) = 𝑠𝑠0𝑑𝑑 + 𝑠𝑠1𝑑𝑑 ∗ 𝑥𝑥 + 𝑠𝑠2𝑑𝑑 ∗ 𝑥𝑥2 + 𝑠𝑠3𝑑𝑑 ∗ 𝑥𝑥3 (11) 

where y, x represents the lateral and longitudinal positions of the points 
on the fitted curve. Each ai represents the coefficients of the fitted 
curve to the lane lines. Here r and l superscripts differentiate the curve 
fits for left and right lane respectively. At the final step, by knowing 
the positions of the targets and lane boundaries, the closest target in 
the lane can be chosen as the in-lane target. For this purpose, firstly, 
all the objects are sorted by their longitudinal distances. Then each 
detected object’s coordinates are translated to the camera coordinate 
system by adding the distance between the camera and the radar in the 
longitudinal direction (∆x) Equations 12 and 13.  

𝑥𝑥𝑛𝑛𝑑𝑑𝑤𝑤_𝑑𝑑 = 𝑥𝑥𝑑𝑑 + ∆x   (12) 

𝑦𝑦𝑛𝑛𝑑𝑑𝑤𝑤_𝑑𝑑 = 𝑦𝑦𝑑𝑑    (13) 

Inserting the new lateral distance of the target objects into the 
Equations 10 and 11, the left (LB) and right boundaries (RB) of the 
lane at the distance of the target object is calculated (Equations 14 and 
15). 
 

𝐿𝐿𝐿𝐿𝑑𝑑 = 𝑠𝑠0𝑙𝑙 + 𝑠𝑠1𝑙𝑙 ∗ 𝑥𝑥𝑛𝑛𝑑𝑑𝑤𝑤_𝑑𝑑 + 𝑠𝑠2𝑙𝑙 ∗ 𝑥𝑥𝑛𝑛𝑑𝑑𝑤𝑤_𝑑𝑑
2 + 𝑠𝑠3𝑙𝑙 ∗ 𝑥𝑥𝑛𝑛𝑑𝑑𝑤𝑤_𝑑𝑑

3  (14) 

𝑅𝑅𝐿𝐿𝑑𝑑 = 𝑠𝑠0𝑑𝑑 + 𝑠𝑠1𝑑𝑑 ∗ 𝑥𝑥𝑛𝑛𝑑𝑑𝑤𝑤_𝑑𝑑 + 𝑠𝑠2𝑑𝑑 ∗ 𝑥𝑥𝑛𝑛𝑑𝑑𝑤𝑤_𝑑𝑑
2 + 𝑠𝑠3𝑑𝑑 ∗ 𝑥𝑥𝑛𝑛𝑑𝑑𝑤𝑤_𝑑𝑑

3  (15) 

If the lateral distance of the ith detected object is between the calculated 
lane boundaries for the longitudinal distance of the ith object, this object 
is considered to be an in-lane possible target (Equation 16). 

(𝐿𝐿𝐿𝐿𝑑𝑑 < 𝑦𝑦𝑛𝑛𝑑𝑑𝑤𝑤_𝑑𝑑 < 𝑅𝑅𝐿𝐿𝑑𝑑)   (16) 

Among all in-lane possible targets, the closest vehicle in the 
longitudinal direction is accepted as the in-lane target vehicle. Sample 
experimental result for this method is presented in Figure 10. The 
lateral position of the target vehicle with respect to the center of the 
vehicle and lane boundaries are shown in the plot. One can see from 
the experimental result that the target vehicle is detected even in the 
curved section of the road accurately.  

 

 
Figure 10. In lane vehicle detection experimental results. 

Experimental Results 

In the experiments, the target vehicle speed profile is chosen as the 
same with the simulation target vehicle speed profile. Target vehicle 
profile is generated in real time with IDM driver similar to the 
simulation environment. The virtual target vehicle accelerates to 20 
km/h and 25 km/h consecutively then it stops. In the CACC scenario, 
the simulated acceleration values for the target vehicle is broadcasted 
through DSRC OBU and it is received by another OBU for the ego 
vehicle. One can see the experimental results for the ACC and CACC 
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for 1 second headway time overlaid onto the simulation results on 
Figure 11. The simulation results match with the experimental results. 
The small mismatches between the experiment and CarSim simulation 
are caused due to the fact that the CarSim vehicle model is not an exact 
model of the experimental vehicle. In the CarSim simulation, a generic 
D class vehicle model is used. In response to the speed changes in the 
target vehicle speed profile, the CACC speed controllers start 
accelerating and deceleration faster as compared to ACC using the 
target vehicle acceleration information coming from the DSRC 
modem.  Thus, the CACC controller can follow the target vehicle more 
accurately. CACC time headway following performance is much 
better than the performance of ACC.  

Similarly, CarSim simulations and experiments are repeated for 
desired time headway of 0.6 s. The comparison of the simulation and 
experiment results are shown in Figure 12. Similar to the previous case 
the simulation and experimental results are close to each other. And 
CACC performs better while following the target vehicle with constant 
0.6s time headway.  

 

 

Figure 11. Comparison of ACC and CACC experimental results with 
simulation results for 1 second desired time headway. 

 

Figure 12. Comparison of ACC and CACC experimental results with 
simulation results for 0.6 second desired time headway. 

 

Summary/Conclusions  

In this manuscript, the design process of ACC and CACC structure of 
the Automated Driving Lab at The Ohio State University is presented 
with initial simulation and experimental results. Both simulation and 
experimental results show that communication between the target 
vehicle and ego vehicle in CACC increase the car following 
performance significantly. This performance improvement will lead to 
better string stability and capacity increase on the roads. As a next step 
conducted experiments will be repeated with actual target vehicle and 
higher speed scenarios. The performance of the lower level controllers 
will be improved. Multi-vehicle look-ahead scenarios will be 
examined. 
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Abstract 

In recent years, there has been increasing research on automated 
driving technology. Autonomous vehicle path following performance 
is one of significant consideration. This paper presents discrete time 
design of robust PD controlled system with disturbance observer 
(DOB) and communication disturbance observer (CDOB) 
compensation to enhance autonomous vehicle path following 
performance. Although always implemented on digital devices, DOB 
and CDOB structure are usually designed in continuous time in the 
literature and also in our previous work. However, it requires high 
sampling rate for continuous-time design block diagram to 
automatically convert to corresponding discrete-time controller using 
rapid controller prototyping systems. In this paper, direct discrete 
time design is carried out. Digital PD feedback controller is designed 
based on the nominal plant using the proposed parameter space 
approach. Zero order hold method is applied to discretize the nominal 
plant, DOB and CDOB structure in continuous domain. Discrete time 
DOB is embedded into the steering to path following error loop for 
model regulation in the presence of uncertainty in vehicle parameters 
such as vehicle mass, vehicle speed and road-tire friction coefficient 
and rejecting external disturbance like crosswind force. On the other 
hand, time delay from CAN bus based sensor and actuator command 
interfaces results in degradation of system performance since large 
negative phase angles are added to the plant frequency response. 
Discrete time CDOB compensated control system can be used for 
time delay compensation where the accurate knowledge of delay time 
value is not necessary. A validated model of our lab’s Ford Fusion 
hybrid automated driving research vehicle is used for the simulation 
analysis while the vehicle is driving at high speed. Simulation results 
successfully demonstrate the improvement of autonomous vehicle 
path following performance with the proposed discrete time DOB 
and CDOB structure. 

I. Introduction 

During the past decades, autonomous vehicle driving technology has 
been developing rapidly. Researchers are investigating different 
steering control methods to improve path following performance of 
autonomous vehicle. In [1], a double loop PD-PID controller is 
designed for the vehicle steering control. The inner loop is a PID 
controller which performs to control the position of steering wheel 
while the outer loop is a PD controller which aims at vehicle’s 
heading control. Similar to double loop PD-PID controller, nested PI 
and PID controller was proposed in [2]. PI steering controller at inner 

loop that reduces yaw rate tracking error is used to improve the 
vehicle steering dynamics. A PID controller is employed at external 
control loop to reject the lateral deviation from the desired path due 
to road curvature disturbance. Sliding model control has been widely 
used due to its benefits of fast and good transient response and 
robustness with respect to system uncertainties and external 
disturbances [3]. As another classic control method, model predictive 
control has the capability to deal with a wide variety of process 
control constraints systematically and is applied to the socially 
acceptable collision free path following system in [4]. Parameter 
space approach based robust PID controller design is presented in [5-
6] and it has the advantage of dealing with variable vehicle 
parameters such as vehicle mass, vehicle velocity and road-tire 
friction coefficient.  

In order to further improve autonomous vehicle path following 
performance in the existence of uncertain parameters and external 
disturbance, a disturbance observer (DOB) is added into the control 
system to achieve insensitivity to modeling error and disturbance 
rejection. The disturbance observer was firstly proposed by Ohnishi 
[7] and further developed by Umeno and Hori [8]. Later, DOB has 
been applied in mechatronic applications in the literature. In [9], 
robustness of disturbance observer is added to the model of 
electrohydraulic system considering the case in which the plant has 
large parametric variation. Two-degrees-of-freedom control 
architecture known as the model regulator (disturbance observer) is 
proposed in [10] as a robust steering controller for improving yaw 
stability in a driver-assist system. 

In the autonomous vehicle path following system, CAN bus delay in 
the steering system is another important issue. Time delay causes 
large negative phase angles which lead to performance degradation or 
even instability of the system. The Smith predictor has been firstly 
introduced and used in many different cases such as [11-12]. It has 
the advantage of easy implementation. However, time delay model 
and model accuracy in the knowledge of time delay are required to 
ensure no degradation of compensation performance. Communication 
disturbance observer is proposed as another time delay compensation 
approach. It was firstly applied in the bilateral teleoperation systems 
[13] and has been extended to robust time delayed control system in 
[14-15]. Compared with Smith predictor, the accurate knowledge of 
the time delay value is not necessary in communication disturbance 
observer and also it can be used for plants with variable time delay.  

Disturbance observer and communication disturbance observer are 
usually designed in continuous time domain and conducted on the 
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digital platform using a very high sampling rate. This requires high 
speed processors and may not be achievable in many situations. 
Therefore, it is worthwhile to investigate direct discrete time design 
for DOB and CDOB compensated system. [16] discusses application 
of different discretization methods in discrete implementation of the 
DOB based control and analyzes three very popular discretization 
methods: backward difference, bilinear transform, and Al-Alaoui 
method. It shows that bilinear transform method and Al-Alaoui 
method provide significantly better performance than backward 
difference method. A state-space analysis of discrete-time DOB for a 
class of sampled-data control systems is presented in [17], where 
discrete-time singular perturbation theory is used to make uncertain 
sampled-data control system with the discrete-time DOB behaves as 
the nominal model without disturbance. [18] analysis robust stability 
condition for discrete time DOB designed by using forward 
difference discretization method where it is observed that the ratio 
between time constant of Q filter and sampling time is of significant 
importance in discrete time DOB and the ratio is suggested to be one 
for stability. In [19], a discrete-time communication disturbance 
observer is applied in a network-based gait rehabilitation system for 
compensating time delay which exist in both sensor-controller and 
controller actuator channels. 

This paper is an extension of our previous work about DOB and 
CDOB compensated autonomous vehicle path following control 
system from continuous time domain to discrete time domain. Digital 
robust PD controller is designed based on the parameter space 
approach. Uncertainty box illustrating vehicle parameter variations is 
formed where the vehicle is operating at high speed. DOB structure 
and CDOB structure are discretized using zero-order-hold method. 
Simulation results show that discrete time DOB compensated system 
deals with model regulation and external disturbance rejection and 
discrete time CDOB compensated system realizes time delay 
compensation. Both of them present better path following 
performance than PD feedback controlled system. 

The rest of this paper is organized as follows. Section II presents the 
validated single track vehicle model used for the autonomous vehicle 
path following. The structures of disturbance observer and 
communication disturbance observer in discrete time domain are 
illustrated in Section III and Section IV, respectively. Section V 
presents parameter space approach based digital robust PD controller 
design and discretization of DOB and CDOB structures through ZOH 
method is given in section VI. Section VII shows simulation results 
of autonomous vehicle path following using discrete time PD with 
DOB compensation and CDOB compensation, respectively. The 
paper ends with conclusions in Section VIII. 

II. Vehicle Model 

A single track vehicle model presented in Figure 1 is used to model 
the steering dynamics. The state space model can be described as: 
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 Figure 1. Single track vehicle model diagram 

As crosswind force has some influence on dynamics of the vehicle 
system, the extended vehicle model is given as: 
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where 

𝑎𝑎11=-(𝑐𝑐𝑟𝑟+𝑐𝑐𝑓𝑓)/𝑚𝑚�𝑉𝑉, 𝑎𝑎12=-1+(𝑐𝑐𝑟𝑟𝑙𝑙𝑟𝑟 − 𝑐𝑐𝑓𝑓𝑙𝑙𝑓𝑓)/𝑚𝑚�𝑉𝑉2                           (3) 

𝑎𝑎21=(𝐶𝐶𝑟𝑟𝑙𝑙𝑟𝑟 − 𝑐𝑐𝑓𝑓𝑙𝑙𝑓𝑓)/𝐽𝐽, 𝑎𝑎22=−(𝑐𝑐𝑟𝑟𝑙𝑙𝑟𝑟  
2 + 𝑐𝑐𝑓𝑓𝑙𝑙𝑓𝑓2)/𝐽𝐽𝑉𝑉2 

𝑏𝑏11=𝑐𝑐𝑓𝑓/𝑚𝑚�𝑉𝑉, 𝑏𝑏21=𝑐𝑐𝑓𝑓𝑙𝑙𝑙𝑙/𝐽𝐽 

Writing vehicle steering dynamics in standard form according to (2): 

�̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐵𝐵                                                                                (4) 

The transfer function from front wheel steering angle 𝛿𝛿𝑓𝑓  to the lateral 
deviation y in continuous time domain is calculated as equation (5): 

𝑦𝑦
𝛿𝛿𝑓𝑓

= 𝐺𝐺𝛿𝛿𝑓𝑓 = [0 0 0 1](𝑠𝑠𝑠𝑠 − 𝐴𝐴)−1 �

𝑏𝑏11
𝑏𝑏21
0
0

�                                        (5) 
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Figure 2. Experiment vehicle 

A Ford Fusion hybrid sedan shown in Figure 2 is used as the vehicle 
under consideration for controller design and simulation. The values 
of single track model parameters given in Table 1 are measured from 
experimental vehicle and the vehicle model is validated as seen in 
reference [20]. Vehicle virtual mass 𝑚𝑚�(𝑚𝑚/𝜇𝜇), vehicle velocity V and 
road friction coefficient 𝜇𝜇 are taken as three uncertain parameters of 
interest. The nominal values of these three parameters are 2,000 kg, 
60 km/hr and 1, respectively. The uncertainty box showing maximum 
parametric variation in velocity V and virtual mass  𝑚𝑚�  of this vehicle 
is shown in Figure 3. Four vertices labeled by a, b, c, d in the 
uncertainty box are used to evaluate the performance improvement of 
the disturbance observer compensated system. 

 

Figure 3. Parametric Uncertainty Box 

Table I.  Ford Fusion vehicle model parameters 

β vehicle side slip angle [rad] 

subscript f front tires 

V vehicle velocity [m/s] 

δf front wheel steering angle [rad] 

J yaw moment of inertia [3728 kgm2] 

𝐶𝐶𝑟𝑟 rear cornering stiffness [50,000 N/rad] 

lf distance from CG to front axle [1.3008 m] 

lr distance from CG to rear axle [1.5453 m] 

ρref=1/R curvature of path [1/m] 

r vehicle yaw rate [rad/s] 

subscript r rear tires 

∆ψ yaw orientation error with respect to path [rad] 

y lateral deviation [m] 

𝐶𝐶𝑙𝑙 front cornering stiffness [195,000 N/rad] 

𝑚𝑚 vehicle mass [2,000 kg] 

𝑙𝑙𝑠𝑠 preview distance [2m] 

𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  crosswind force [500N] 

𝑙𝑙𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  horizontal distance from crosswind force acting 
point to vehicle’s CG 

 

III. Discrete Time Disturbance Observer 

The block diagram of the discrete time closed-loop control system 
with disturbance observer compensation is depicted in Figure 4. In 
the block diagram, robust digital PD feedback controller is used as a 
baseline controller which is designed based on the nominal discrete 
model of the vehicle. Q(z) is the low pass filter to be selected and its 
bandwidth determines the bandwidth of model regulation and 
disturbance rejection. System plant G(z) is formulated by taking both 
model uncertainty ∆𝑚𝑚(𝑧𝑧) and external disturbance d into account. 
The vehicle input - output relation becomes: 

𝑦𝑦 = 𝐺𝐺(𝑧𝑧)𝐵𝐵 + 𝑑𝑑 = (𝐺𝐺𝑤𝑤(𝑧𝑧)�1 + ∆𝑚𝑚(𝑧𝑧)�)𝐵𝐵 + 𝑑𝑑                      (6)                             

where 𝐺𝐺𝑤𝑤(𝑧𝑧) is the desired model of plant and 𝐺𝐺(𝑧𝑧)  represents the 
actual plant. The goal in disturbance observer design is to obtain:  

𝑦𝑦 = 𝐺𝐺𝑤𝑤(𝑧𝑧)𝐵𝐵1                                                                                 (7) 

as the input-output relation in the presence of model uncertainty 
∆𝑚𝑚(𝑧𝑧) and external disturbance 𝑑𝑑.𝐵𝐵1 is regarded as a new steering 
input which is derived as follows. By considering model uncertainty 
and external disturbance as an extended disturbance e, equation (6) 
can be rewritten as (8): 

𝑦𝑦 = (𝐺𝐺𝑤𝑤(𝑧𝑧)�1 + ∆𝑚𝑚(𝑧𝑧)�)𝐵𝐵 + 𝑑𝑑 = 𝐺𝐺𝑤𝑤(𝑧𝑧)𝐵𝐵 + 𝑒𝑒                      (8)                     

Combining equation (7) with equation (8), the new control input 𝐵𝐵1 
is represented as: 
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𝐵𝐵1 = 𝐵𝐵 + 𝑟𝑟
𝐺𝐺𝑤𝑤(𝑧𝑧)

                                                                                 (9) 

and  

𝐵𝐵 = 𝐵𝐵1 −
𝑟𝑟

𝐺𝐺𝑤𝑤(𝑧𝑧)
= 𝐵𝐵1 −

𝑦𝑦
𝐺𝐺𝑤𝑤(𝑧𝑧)

+ 𝐵𝐵                                                (10) 

In order to limit the compensation to a low frequency range to avoid 
stability robustness problem at high frequency, the feedback signals 
in (10) are multiplied by the low pass filter Q(z) and implementation 
equation becomes: 

𝐵𝐵 = 𝐵𝐵1 −
𝑄𝑄

𝐺𝐺𝑤𝑤(𝑧𝑧)
𝑦𝑦 + 𝑄𝑄𝐵𝐵                                                                 

(11) 

According to discrete time disturbance observer structure in Figure 4, 
we have the following equation (z is omitted in transfer function for 
simplicity): 

𝑌𝑌(𝑧𝑧) = 𝐶𝐶𝐺𝐺𝐺𝐺𝑤𝑤
𝐺𝐺𝑤𝑤(1−𝑄𝑄)+𝐺𝐺(𝐶𝐶𝐺𝐺𝑤𝑤+𝑄𝑄)

𝑅𝑅(𝑧𝑧) + 𝐺𝐺𝑤𝑤(1−𝑄𝑄)
𝐺𝐺𝑤𝑤(1−𝑄𝑄)+𝐺𝐺(𝐶𝐶𝐺𝐺𝑤𝑤+𝑄𝑄)

𝐷𝐷(𝑧𝑧)      (12) 

In DOB, Q is chosen as a unity low pass filter, with Q→ 1, 

𝑌𝑌(𝑧𝑧)
𝑅𝑅(𝑧𝑧)

= 𝐶𝐶𝐺𝐺𝐺𝐺𝑤𝑤
𝐺𝐺𝑤𝑤(1−𝑄𝑄)+𝐺𝐺(𝐶𝐶𝐺𝐺𝑤𝑤+𝑄𝑄)

→ 𝐶𝐶𝐺𝐺𝑤𝑤
(1+𝐶𝐶𝐺𝐺𝑤𝑤)

                                              (13) 

From (13), we can see that DOB augmented plant behaves like its 
nominal plant 𝐺𝐺𝑤𝑤 , which realizes the model regulation. Also, with 
𝑄𝑄 → 1, 

  𝑌𝑌(𝑧𝑧)
𝐷𝐷(𝑧𝑧)

= 𝐺𝐺𝑤𝑤(1−𝑄𝑄)
𝐺𝐺𝑤𝑤(1−𝑄𝑄)+𝐺𝐺(𝐶𝐶𝐺𝐺𝑤𝑤+𝑄𝑄)

→ 0                                                      (14) 

which realizes disturbance rejection.  

 

Figure 4. Digital Disturbance Observer Compensated Control System 

 

IV. Discrete Time Communication Disturbance 
Observer 

In order to deal with path following performance degradation or even 
destabilization caused by the time delay from CAN bus based sensor 
and actuator command interfaces, communication disturbance 
observer is applied to compensate the time delay. Figure 5 illustrates 

block diagram of time delay estimation for CDOB design in z 
domain. Time delay is considered as a disturbance d which is injected 
on the system and the aim is to obtain disturbance estimation �̂�𝑑 . 
Equation (15) is obtained from Figure 5 and it can be rewritten as 
(16). Then, the estimated disturbance �̂�𝑑 is derived by multiplying 𝑑𝑑 
with Q(z) to ensure causality as shown in equation (17). 

𝑦𝑦 = 𝐺𝐺𝑤𝑤(𝑧𝑧)(𝐵𝐵 − 𝑑𝑑)                                                                      (15) 

𝑑𝑑 = 𝐵𝐵 − 𝐺𝐺𝑤𝑤(𝑧𝑧)−1𝑦𝑦                                                                      (16)   

�̂�𝑑 = 𝑄𝑄(𝑧𝑧) (𝐵𝐵 − 𝐺𝐺𝑤𝑤(𝑧𝑧)−1𝑦𝑦)                                                          (17)                                                             

According to network disturbance concept as depicted in Figure 6,  �̂�𝑑 
can be also expressed as equation (18): 

�̂�𝑑 = 𝐵𝐵 − 𝐵𝐵𝑧𝑧−𝑁𝑁                                                                              (18) 

where u is system input and N is the time delay. 

In this way, the estimated disturbance �̂�𝑑  is used to compensate the 
time delay effect in the feedback signal.  

 

Figure 5. Classic disturbance observer in z domain 

 

Figure 6. Conceptual  block diagram of network disturbance 

The block diagram of discrete-time CDOB compensated system is 
shown as Figure 7. Consider the time delay in the plant, 𝐺𝐺(𝑧𝑧) =
𝐺𝐺𝑤𝑤(𝑧𝑧)𝑧𝑧−𝑁𝑁 ,  𝑧𝑧−𝑁𝑁  represents the time delay of discrete time vehicle 
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model, where 𝐺𝐺𝑤𝑤(𝑧𝑧) is the nominal plant of 𝐺𝐺(𝑧𝑧). 𝐶𝐶(𝑧𝑧) is the digital 
robust PD controller which stabilizes the nominal plant 𝐺𝐺𝑤𝑤(𝑧𝑧). Q(z) is 
the low pass filter. Based on the block diagram, the command 
regulation and disturbance rejection transfer functions can be derived 
in z domain as equation (19) (20), respectively. 

𝑌𝑌(𝑧𝑧)
𝑅𝑅(𝑧𝑧)

= 𝐶𝐶𝐺𝐺𝑧𝑧−𝑁𝑁

1+𝐶𝐶𝐺𝐺𝑤𝑤𝑄𝑄+𝐶𝐶𝐺𝐺𝑧𝑧−𝑁𝑁(1−𝑄𝑄)
                                                         (19) 

𝑌𝑌(𝑧𝑧)
𝐷𝐷(𝑧𝑧)

= 1+𝐶𝐶𝐺𝐺𝑤𝑤𝑄𝑄
1+𝐶𝐶𝐺𝐺𝑤𝑤𝑄𝑄+𝐶𝐶𝐺𝐺𝑧𝑧−𝑁𝑁(1−𝑄𝑄)

                                                         (20) 

In CDOB, Q filter is chosen as a low pass filter, with Q→ 1 and we 
can see that the time delay effect is eliminated from the closed-loop 
characteristic equation. In this way, the time delay is compensated by 
the CDOB.  

 

Figure 7. Digital CDOB compensated control system 

 

V. Digital Multi-Objective Robust PD Controller 
Design 

Parameter space approach is developed from continuous time domain 
to discrete time domain for digital robust PD controller design. The 
details of parameter space approach based discrete time multi-
objective robust PD controller design can be found in reference [21]. 
For digital multi-objective robust PD controller design, phase margin 
constraint and mixed sensitivity constraint are taken into account 
simultaneously. Phase margin is defined as PM ∈ [20,80] deg and the 
parameters for mixed sensitivity constraint are: low frequency bound 
𝑙𝑙𝑠𝑠 =0.5, the high frequency bound ℎ𝑠𝑠 =4, and the approximate 
bandwidth is 𝜔𝜔𝑠𝑠 = 5rad/sec for sensitivity weight function 𝑊𝑊𝑠𝑠; low 
frequency gain 𝑙𝑙𝑇𝑇 =0.2, the high frequency gain ℎ𝑇𝑇 =1.8, and the 
frequency of transition to significant model uncertainty 𝜔𝜔𝑇𝑇 =
120 rad/sec for complementary sensitivity weight function 𝑊𝑊𝑇𝑇 . 
Figure 8 illustrates the 𝑘𝑘𝑤𝑤 -𝑘𝑘𝑝𝑝  solution region and (𝑘𝑘𝑤𝑤 ,𝑘𝑘𝑝𝑝 ) design 
point is selected as (0.07, 0.2) as shown in red dot. It can be seen 
from Figure 9 that the corresponding frequency responses satisfy the 
phase margin constraint. Figure 10 shows the mixed sensitivity 
constraint is also satisfied with the chosen controller parameters as 
the magnitude plot is below 0dB ((|WsS| + |WTT|) = 1) line. 

 
Figure 8. Multi-objective discrete time PD controller design 
 

 

Figure 9. Phase margin constraint 

 

Figure 10.  Robust performance plot 

VI. Discretization of DOB and CDOB Structure 

Discrete time DOB structure and CDOB structure can be derived 
using zero-order-hold (ZOH) method. The nominal plant 𝐺𝐺𝑤𝑤  is the 
transfer function from front wheel steering angle 𝛿𝛿𝑓𝑓  to the lateral 
deviation y. According to Equation (5), the nominal plant 𝐺𝐺𝑤𝑤  in 
continuous time domain is calculated as: 
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  𝐺𝐺𝑤𝑤(𝑠𝑠)  = 4713𝑠𝑠2  + 1.598×105 𝑠𝑠 + 7.51×105

𝑠𝑠2(1.242 𝑠𝑠2+ 933.8𝑠𝑠 + 10610 )
                                           

(21) 

For DOB structure,  𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷  is designed in our previous work [22] in 
continuous time domain as following equation: 

𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠) = 1
0.25𝑠𝑠2+𝑠𝑠+1

                                                                       (22) 

By using ZOH method, sampling time Ts is given as 0.01 sec,  Gn(𝑧𝑧) 
and QDOB(z) are obtained as: 

 𝐺𝐺𝑤𝑤(z)=  0.04867 𝑧𝑧3 − 0.07432 𝑧𝑧2 + 0.02046 𝑧𝑧 + 0.005954
𝑧𝑧4 − 2.892 𝑧𝑧3 + 2.784 𝑧𝑧2 − 0.8927 𝑧𝑧 + 0.0005429

                     (23) 

𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷(z)= 0.0001974𝑧𝑧+0.0001974
𝑧𝑧2 −1.96𝑧𝑧+0.9608

                                                     (24)            

      For CDOB structure, the cutoff frequency of 𝑄𝑄𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠) is determined 
as 50 rad/s [22] and 𝑄𝑄𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠) can be expressed as equation (25), 
discrete time 𝑄𝑄𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷(z) is derived as equation (26): 

 
𝑄𝑄𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠) = 1

0.0004𝑠𝑠2+0.04𝑠𝑠+1
                                                         (25) 

 
𝑄𝑄𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷(𝑧𝑧) = 0.0902 𝑧𝑧 + 0.06461

 𝑧𝑧2− 1.213 𝑧𝑧 + 0.3679
                                                     (26)                                                  

VII. Simulation Studies  

This section investigates autonomous vehicle path following 
performance of the proposed discrete time robust PD controlled 
system with DOB and CDOB compensation, respectively. An 
elliptical route is chosen as the desired path as shown in Figure 11 
and the profile of 500 N crosswind force which acts as external 
disturbance is given in Figure 12. Vehicle initial position is at (0, 1) 
with 90°  heading angle. The corresponding block diagrams for 
autonomous vehicle path following are given in Figure 4 and Figure 
7, respectively. Matlab/Simulink is used as the simulation software. 
Sample time is 0.01 sec. Nominal plant G(z) is given as equation (23) 
for both Figure 4 and 7. The designed digital robust PD feedback 
controller in Section V is applied as baseline controller for all 
simulations. In the DOB compensated closed loop control structure, 
low pass filter Q(z) is determined as equation (24), and Q(z) for 
robust PD controlled system with CDOB compensation is given as 
equation (26). 

Figure 13-17 present the autonomous vehicle lateral deviation of 
discrete time robust PD feedback controller system with DOB 
compensation at four corners of the parametric uncertainty box and in 
the existence of crosswind disturbance, respectively. For comparison 
purpose, corresponding simulation results of PD only feedback 
control system are also shown in each figure. It can be seen that 
discrete time DOB compensated system has less path following 
errors compared with PD only feedback control system, which 
verifies that discrete time robust PD with DOB compensated system 
effectively deals with model regulation and disturbance rejection. 
Table II compares root-mean-square (RMS) errors of discrete time 
PD control with DOB compensation and discrete time PD control 
only, which also shows better path following performance of DOB 
structure. 

 

Figure 11. Desired path to be followed 

 

 

Figure 12. Crosswind force profile 

 

 

Figure 13. Lateral deviation with and without discrete DOB at corner 
a  
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Figure 14. Lateral deviation with and without discrete DOB at corner 
b  

 

Figure 15. Lateral deviation with and without discrete DOB at corner 
c  

 

Figure 16. Lateral deviation with and without discrete DOB at corner 
d  

 

Figure 17. Lateral deviation with and without discrete DOB for 
crosswind input  

Table II Comparison of RMS tracking errors between digital PD and 
digital PD with DOB 

   Operating 
Condition 

Control 

50km/h 
1600kg 

50km/h 
3200kg 

90km/h 
1600kg 

90km/h 
3200kg 

PD  0.0384m 0.0451m 0.0525m 0.0739m 

PD+DOB 0.0196m 0.023m 0.0268m 0.0377m 

 

Figure 18 compares the autonomous vehicle lateral deviation of 
discrete time robust PD feedback controlled system with and without 
communication disturbance observer compensation by taking time 
delay N=1 sec into account. It is shown in Figure 18 that in the 
existence of time delay, PD feedback control system is not stable and 
oscillates, while CDOB compensation stabilizes the system and its 
lateral deviation is close to the one from nominal plant.  Figure 19 
presents the lateral deviation of CDOB compensated system for 
different time delay values. It is seen that path following errors do not 
increase with the increase of delay time. It can be concluded that 
discrete time CDOB compensates time delay and improves 
autonomous vehicle path following performance. 
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Figure 18. Lateral deviation with and without CDOB for time delay  

 
Figure 19. Lateral Deviations of CDOB compensation for different 
time delay 

VIII. Conclusion  

This paper applies robust PD feedback control with DOB/CDOB 
compensated system in discrete time domain and simulations are 
carried out to verify the effectiveness of the proposed structure. 
Digital robust PD controller is designed based on parameter space 
approach. Discrete-time DOB and CDOB structures are obtained by 
discretizing continuous time DOB and CDOB structures using zero 
order hold method. Autonomous vehicle path following driving at 
high speed is performed to validate the proposed discrete time DOB 
and CDOB structure. Simulation results show that the proposed 
discrete time DOB structure realizes model regulation and 
disturbance rejection, and discrete time CDOB effectively deals with 
time delay compensation. These prove the successful implementation 
of robust PD with DOB and CDOB compensated system in discrete 
domain. In the future work, hardware-in-the-loop simulations and 
experiments will be performed to further test the designed discrete-
time DOB and CDOB systems. 
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Abstract 

As the technology in autonomous vehicle and smart city infrastructure 
is developing fast, the idea of smart city and automated driving has 
become a present and near future reality. Both Highway Chauffeur and 
low speed shuttle applications are tested recently in different research 
to test the feasibility of autonomous vehicles and automated driving. 
Based on examples available in the literature and the past experience 
of the authors, this paper proposes the use of a unified computing, 
sensing, communication and actuation architecture for connected and 
automated driving. It is postulated that this unified architecture will 
also lead to a scalable and replicable approach. Two vehicles 
representing a passenger car and a small electric shuttle for smart 
mobility in a smart city are chosen as the two examples for 
demonstrating scalability and replicability. For this purpose, the 
architecture in the passenger car is transferred to the small electric 
vehicle and used in its automation for demonstrating both scalability 
and replicability. High Level control and low level lateral control are 
presented in this paper. The parameter space based parametric control 
design approach that we are using to achieve scalable automated 
driving controllers is presented in the paper along with a discussion of 
how to evaluate performance and a brief description of the planned 
proof-of-concept test deployment. 

Introduction 

Solutions to autonomous vehicle and automated driving increasingly 
draw interest both from academia and industry, which largely stimulate 
the development of autonomous vehicles. The focus of Original 
Equipment Manufacturers (OEM) are mainly passenger vehicles due 
to its large market share, while small companies are concentrating 
more on small shuttles that can help in solving first-mile, last-mile 
problems. However, there are similarities behind the difference in 
applications on different platforms in some perspectives. The 
architecture which can be used on both high speed passenger vehicles 
and low speed shuttles is really beneficial for products as autonomous 
vehicles will be more demanding in the near future, with the 
development of autonomous vehicle technology and the needs for 
reducing fatalities in transportation related accidents. 

Therefore, the various research efforts that have been conducted on the 
autonomous vehicle architecture that can be applied on high speed and 
low speed applications provide useful experience for application to 
new vehicle platforms. In our work, a unified architecture is proposed 
for autonomous driving and is improved based on our previous work 

upon applications on high speed passenger vehicle and low speed 
shuttle [1]. This unified approach shares the same hardware 
architecture and similar software library of different application 
functions, sensors, actuators and controls.  

The essential part of this unified architecture is the replicability and 
scalability, especially the controller for these vehicles. Considering the 
supervisory controller to make sure that the right decision is made in 
different scenarios, it needs to meet the following requirements: 
feasible and adjustable for different vehicle platforms that have 
different parameters and quick response for handling inputs from 
different scenarios. Therefore, a standard decision-making framework 
with quick response is needed for such a unified architecture to realize 
its replicability and scalability. Also, a robust lateral controller is 
required for realizing the autonomous path following function in our 
unified architecture on high speed passengers vehicle and low speed 
shuttle. 

In this paper, the unified architecture is introduced for high speed 
passengers vehicle and low speed smart shuttle. To meet the 
requirement for supervisory controller, a rule-based decision making 
framework is proposed here for decision making. This decision making 
framework processes sensor information and actuator information to 
generate supervisory control commands for different scenarios that the 
vehicles will meet during autonomous driving. We also talk about the 
robust lateral controller in this unified architecture based on parameter 
space approach for dealing with the challenge of parameter 
uncertainties on different vehicles for low level control. The feasibility 
of this unified architecture is demonstrated with simulations. A brief 
introduction is given upon our software library as well about the 
function and hardware integration. 

The organization of this paper is as follows. In the second section, the 
library used in the unified architecture is introduced. It gives detailed 
information about both hardware integration and software library of 
available autonomous functions during autonomous driving. The third 
section presents the decision making framework and explains how it 
works in response to various scenarios. The fourth section describes 
the robust lateral controller for path following in the unified 
architecture. The next section shows the simulation results for 
implementing the controller on the unified architecture. High Level 
controller and low level controller are deployed separately and results 
are explained in detail related to the controller design. The final section 
gives conclusion and future goals for our unified architecture.  
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Unified Architecture and Library 

In this section, we present the hardware library and software library on 
the unified architecture. An autonomous vehicle needs sensors to 
perceive its environment, processing units to process the data from 
these sensors and actuators to drive the vehicle without a human driver. 
All of these elements should be chosen properly to obtain the best 
result possible according to the determined goal. The main idea of the 
unified architecture is to design an autonomous vehicle structure that 
can be easily modified or adapted and implemented on another vehicle 
platform regardless size and type to achieve replicable and scalable 
autonomous driving. After the implementation, only necessary 
modifications to optimize the performance would be tuning the low-
level controller parameters according to the vehicle and fine tuning of 
the autonomous driving functions for the new platform. Such an 
autonomous vehicle hardware architecture also showing the flow of 
information is shown in Figure 1 and has been easily adapted from our 
earlier work on driving automation. 

 

Figure 1. Unified Architecture. 

As seen in Figure 1, sensors such as camera, radar, lidar and Leddar 
are chosen for perception. Data from these sensors are processed in a 
real time Linux Computer (mainly lidar data processing) and Drive 
PX2 (mainly image processing) using ROS and neural networks such 
as YOLO and SEGnet, then processed data is sent to the lower level 
control unit which in our case is a Microautobox. Pedestrians, other 
vehicles and obstacles are detected by these sensors and actions can be 
taken accordingly. An OBU is also added to provide DSRC 
communication capabilities so that V2X applications can be 
implemented. These capabilities can also be used to have solutions for 
NLOS scenarios or improving applications such as ACC to CACC. An 
important function in autonomous driving is localization. Localization 
is mainly taken care of by an OXTS RTK GPS sensor in our vehicles, 
which can provide up to 50 cm accuracy in non-RTK differential GPS 
operation. In addition, with the corrections coming from an RTK 
Bridge-X, this accuracy can go up to 4 cm, which is very accurate for 
this type of application. Since this architecture aims for robust 
autonomous driving, lidar sensor is also used with algorithms such as 
SLAM [2] and map-mapping matching to localize the vehicle, in case 
of GPS signal loss.  

The main lower level control unit for the vehicle is the microautobox. 
Processed data from sensors are transferred into this real-time 
processing unit to go through decision making, low level control 
computations and converted into actuator commands such as steering 

angle, throttle and brake percentages. Software for this controller is 
designed in MATLAB Simulink and converted to C code, then 
compiled, using Simulink Coder and lastly embedded into the 
microautobox electronic control unit. Designing the software structure 
in Simulink provides advantages such as faster prototyping capability, 
flexibility, better readability and allows us to create a unified library 
with a similar idea of a unified architecture. The aim is to combine 
these two together to create a base that will allow any vehicle platform 
to have autonomous driving capabilities by using the unified software 
library together with the unified hardware architecture. Moreover, 
since the blocks are separately designed in Simulink, if there is a need 
for modification such as one sensor missing or an algorithm that needs 
to be improved, this modification can be directly managed through that 
block separately. The unified software library structure designed in 
Simulink is shown in Figure 2. 

This Simulink software library is designed under several main titles. 
Localization blocks are used to receive localization data from different 
sensors, where some of them are processed and coming from 
processing units and some of them are directly measured and 
transferred to the microautobox. 

 

Figure 2. Unified Library. 

Similarly, perception blocks are used to receive perception data from 
sensors or processed data from their processing units. Autonomous 
behavior algorithm blocks make necessary computations for 
autonomous driving algorithms such as path following and obstacle 
avoidance for lateral driving and car following and cruising for 
longitudinal driving. Decision making part has blocks that use all the 
information available to the computers such as localization, perception 
to determine the autonomous driving state in a finite state machine 
implementation of decision making. Deep learning algorithms used for 
decision making are also under that heading. Low-level control blocks 
are for calculating throttle, brake and steering commands required for 
executing the autonomous driving functions selected by decision 
making. Lastly, actuator blocks are used to transfer outputs from these 
low-level controllers to the real actuators inside the vehicle through 
communication such as CAN or analog signals. 

This design is implemented with the hardware architecture and library 
part into two different sized vehicles to demonstrate, in a limited sense, 
replicability and scalability. One full size sedan hybrid vehicle (Ford 
Fusion) and one small size fully electric vehicle (Dash EV) are used 
for this purpose. While the sedan vehicle is aimed more for high speed 
autonomous driving applications, the smaller neigborhood electric 
vehicle is aimed for lower speed autonomous shuttle type driving 
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applications. These two vehicles with their implemented hardware are 
displayed in Figure 3. It can also be seen that the sensor and hardware 
placement are similar for both implementations. 

 

Figure 3. Unified Implementation 

Decision Making Framework 

At the core of autonomous vehicle control system, the supervisory 
controller plays a very important role in determining the appropriate 
state and subsequent course of action when faced with different 
situations. Decision making has been a research topic that has drawn 
broad attention and great progress is being made with the various 
methods that are deployed.  

To take care of the uncertainties in the environment, many research 
efforts in decision making have utilized the probabilistic method for 
errors that occur in the perception part of autonomous vehicle. Markov 
Decision Process is one of the most popular methods. A lot of work 
has been done in decision making based on Markov Decision Process 
or POMDP [3,4] to deal with the uncertainties existing in perception 
and situational awareness. Also, since artificial intelligence is also 
commonly used and well developed, decision making based on 
machine learning has also been studied and implemented widely in 
autonomous driving [5].  

Due to the heavy computation and uncertainties in the probabilistic 
method and machine learning method, the platform for supporting 
decision making has to have a powerful computer like the NVIDIA 
GPUs used in our hardware architecture for good performance. The 
rule-based decision making framework is used in this paper because of 
lower computation complexity and ease of implementation on most of 
the vehicle platforms we use. Work on replicable and scalable 
probabilistic or machine learning based decision making is in progress 

and will be reported in future papers. References [6,7] report such rule-
based framework in the DARPA Urban Challenge for example.   

Start

Traffic Light 

Path 
Following CarFollow 

Path Following

Intersection Obstacle

Self-
Localization

Emergency

Destination

End

Stop Sign or 
Left turn

 

Figure 4. Diagram of Framework for Decision Making in the Unified 
Autonomous Vehicle Architecture w/ some of switching conditions shown 

Figure 4 shows the diagram of our decision-making framework as a 
Finite State Machine (FSM). It is used to switch between different 
driving states while doing the task of shuttle or urban driving in a 
passengers vehicle. Switching between states is triggered by input 
from perception part generated by the sensors introduced into the 
hardware library of unified architecture, including desired path, ego-
vehicle location referred to the path, traffic light signal, road signs and 
objects in the surrounding environment on the path. This FSM process 
has six driving states that will occur in urban driving and one 
emergency states. They are explained below. 

• Start: This is the beginning of the autonomous driving task. The 
vehicle will receive information about the pre-planned path. 

• Self-localization: This is the initial state of the vehicle in an 
autonomous driving task. It allows the vehicle to estimate its 
location on the designated route and learn about the knowledge of 
where to start in order to do path following. The self-localization is 
realized in two methods: the first is GPS localization using 
differential RTK GPS and RTK bridge. When the GPS signal is 
correctly received, it can accurately locate the vehicle on the path. 
When GPS localization fails or is not desired, pointcloud based 
localization will be utilized such as SLAM or map matching. Self-
localization is done periodically to make sure that the path following 
task is accomplished. 

• Path Following: This is the most commonly called state for 
autonomous driving. In this state, the vehicle follows the planned 
path at a certain speed based on the robust lateral controller. There 
is a sub-state in this path following, the Car follow path following. 
The function of this sub-state is similar to adaptive cruise control in 
highway driving. If a vehicle is detected in front of the ego-vehicle, 
this state will be triggered, then ego-vehicles will follow the front 
vehicle at its speed or our planned speed if its speed is higher than 
speed limit of the road. This state is a dominant state that we will be 
in most of the time to ensure our ego vehicle can do different 
autonomous driving tasks successfully and to successfully cooperate 
with other vehicles in the same lane. The function of path following 
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is realized by implementing robust controller with parameter space 
method on our unified architecture for autonomous vehicles. The 
control deployed in the unified architecture is replicable and 
scalable so that it can work with vehicles with different parameter 
and ensure the robust performance in path following maneuver. 

• Intersection: The intersection state will be triggered from path 
following when a cross road and a stop sign is detected or when a 
left turn or right turn entry into a road is to be executed. In the 
intersection state, if there is no stop sign detected, ego-vehicle will 
go back to previous state and wait for another input for switching. If 
a stop sign is detected, the ego-vehicle will automatically wait for a 
few seconds and then do the crossing traffic check. Side radars and 
lidar sensors will be used in such a condition to detect crossing 
traffic when waiting at the stop sign. The waiting time can be 
determined by algorithm mentioned in [8]. After input of crossing 
traffic checking shows no vehicle is crossing within the range of 
sensor detection, FSM will be triggered back to path following state 
to continue vehicle motion. The other scenario that can triggered by 
switching into intersection state is that a left turn needs to be taken 
for path following. The way of determining whether we are going to 
take a left turn or not is by the curvature of upcoming path. Knowing 
the current location of ego-vehicles and the planned path, the 
curvature can easily be derived as an input of this framework. When 
left turn is needed, we will wait for 2 seconds and do crossing traffic 
detection. It will be switched back to path following once crossing 
traffic information is gained and no vehicle is passing by. 

• Traffic Light: Traffic light state will be switched into as information 
of traffic light position is received through input and it is found that 
the ego-vehicle is closed to a traffic light. Apart from the traffic light 
position information, signal information is also collected and work 
as input for the traffic light state. Several sub-states lie within the 
traffic light state. Red light state is on when red light signal and 
yellow light signal is received. Then, the vehicle will stop and wait 
for several seconds then check the red light signal again. Green light 
state is triggered if green light signal is received. Green light state is 
an intermedia state between Traffic Light state and Path following 
state. As the green light state is triggered, our state will switch back 
to the Path Following state. Traffic light State helps the autonomous 
vehicle to pass the traffic light without stopping if possible. Further 
improvement can be made for this state with the help of other 
sensors, such as the modem on vehicle. In the near future, V2I 
communication will be widely implemented on the road such that 
road infrastructure can communicate with autonomous vehicle 
through “RSU Modem” communication. It will be easier and faster 
for detecting traffic light position information and traffic light 
signals while doing autonomous driving. 

• Obstacle: The state of Obstacle is a maneuver for obstacle avoidance. 
There are possibilities that different objects are encountered on the 
road and block the lane in which the ego vehicle is moving. The 
decision making framework will switch into this state when an 
obstacle is detected in front of the vehicle. The distance of detecting 
is related with moving speed. The distance for detecting is the safe 
distance for braking. In this framework, a pedestrian is regarded as 
an obstacle as well. When a pedestrian is detected, the obstacle state 
is triggered and a stop maneuver is taken to slow down the vehicle. 
In this paper, obstacle avoidance maneuver is doing the brake and 
stop since the test route for this paper has only a single lane road. 
Later on, collision avoidance algorithm will be implemented to 
realize a better action for avoiding the obstacle. 

• Emergency stop: This state is the emergency state to make sure 
nothing goes wrong while doing autonomous driving task. 
Sometimes, the controller may have unexpected error and send 
wrong low level control command to the vehicle. Thus, action will 

be made by human driver to switch the FSM to Emergency Stop 
state. In this state, the vehicle will be switching back to manual 
driving and will be stopped by the human driver. This function is 
realized if the emergency button is pushed or steering wheel, brake 
pedal or throttle pedal are touched by the human driver in the driver 
seat. This state can be triggered from any one of the other states in 
the FSM.  

The transition in Finite State Machine triggered by input information 
make state of driving switch for decision making. It gives high level 
command to the vehicle so that the vehicle can react to different 
scenarios while autonomously driving. The sub states within different 
states can do maneuvers when specific sensor information and vehicle 
state are sent to the controller. Also, the emergency stop state can take 
care of exceptions to improve the safety of the autonomous driving 
task. This rule-based decision making framework has the advantage of 
low computational complexity and ease of modification and 
improvement.  

States and rules can be added in the near future to deal with more 
complicated situations and the performance of this framework can also 
be improved with more sensing function added in the unified 
architecture. For example, the state “Stop for passenger” can be added 
in the future when the function of an on-demand ordering service is 
added to the shuttle vehicle. With 3D mapping and map matching 
technology, the accuracy of self-localization will be improved when 
the GPS signal is weak. A collision avoidance algorithm will enable 
the Obstacle state to make a maneuver to make a detour around the 
obstacle rather than stop and wait for the stopped obstacle to move.  

Figure 5 shows the deployment of finite state machine with state flow 
chart. Inputs of the chart are index of scenarios, including 
“traffic_light”, “red_light”, “cross_traffic”, “obstacle”, “obstacle” “e-
stop”, “car_in_front” and “left_turn” from environment perception and 
vehicle path following controller. With the inputs, switching will occur 
as the switching condition is satisfied in the finite state machine. The 
output of this chart is the index of driving state corresponding to the 
current scenario. The output index is for one of the three basic driving 
states for autonomous path following function: path following, car 
follow with path following and the stop state.  

Lateral Controller on Unified Architecture 

This section introduces the robust lateral control algorithm that we use 
on the unified architecture. Path following algorithm have been studied 
in different research [11]. With the lateral control algorithm, vehicles 
with our unified architecture can do autonomous path following 
function. A robust PD controller was designed as the lateral steering 
controller for the vehicle to track the planned path, as seen in our 
previous work [9]. A bicycle model of the vehicle presented in [10] 
was used to derive its deviation from the planned path. The controller 
has the following form with the look-ahead error y as feedback: 

 ( ) p dC s k k s= +  (1) 

The uncertainty area of our two experimental platforms, Dash and 
Fusion, are shown in Figure 6 using vehicle specifications and working 
conditions.  
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                                              (a) 

 

                                               (b) 

Figure 5. (a) State Flow chart of the decision making framework. (b) Structure 
of the Finite State Machine in State Flow chart 

 

Figure 6. Uncertainty region of vehicle mass m, longitudinal speed Vx and 
parameter η for Dash and Fusion experiment platforms. 

The design process takes Dash as an example with both D-stability and 
mixed sensitivity criterion into consideration. Satisfaction of the mixed 
sensitivity criterion ensures the robust performance, i.e. desired 
tracking performance and robustness to model uncertainties:  

 1S TW S W T
∞

+ < ,  (2)  

where S  is sensitivity function, T  is complementary sensitivity 
function, SW  and TW  are weights for S  and T  respectively. 

The D-stability boundaries and mixed sensitivity point conditions are 
reflected onto the design space of controller parameters pk  and dk  
using the parameter space approach [9]. Figure 7 shows the parameter 
space at vertex P1 for the Dash vehicle. The colored lines in the plot 
are reflections of D-stability boundaries while the points of blue 
envelope curves were obtained by substituting a range of frequency 
values at critical condition of (2). Similarly the parameter space at the 
other three vertices were drawn. The PD controller parameters 

0.5pk = , 0.035dk =  (red cross in Figure 7) were picked in the 
overlapped selectable region, satisfying the design requirement at all 
four uncertain vertices. Figure 8 shows the magnitude plot of 

S TW S W T+  at each vertex of the uncertainty region. It can be seen 
that the mixed sensitivity constraint (2) is met at those extremal points. 

 

Figure 7. Parameter space at vertix P1 

 

Figure 8. Robust performance satisfied with selected PD parameters at each 
apex 
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Simulation and result explanation  

To evaluate the performance of the developed control strategy, along 
with both low level control, decision making and sensor placement, a 
simulation of controller deployment is required.  

Simulation Environment of Decision Making 
Framework 

The simulation is done in the Carsim Environment with Carsim 
simulink co-simulation. In Carsim, the test route can be set up with 
other virtual vehicles to simulate the road environment that the vehicle 
will meet while driving in the real world. In this paper, the simulation 
is made on the route COSI from one of the smart city test routes in 
Columbus as shown in Figure 9 and using simulation vehicles as in 
Figure 10. Simulation results are presented with the simulation of both 
the low speed vehicle model and the high-speed passenger vehicle 
model while also showing the decision making FSM state.  

      

                          (a)                                                          (b)         

 

                                                        (c) 

 Figure 9. (a) COSI route in map (test route is enlightened); (b) plot of route in 
global frame; (c) Test route constructed in Carsim Simulation. 

                 

  (a)                                                           (b) 

Figure 10. Carsim Simulation environment on different vehicle models; (a) 
Low speed vehicle model; (b) High speed vehicle model 

In the simulation of high-level controller, we tested the decision 
making framework with four scenarios: intersection with stop sign, 
traffic light with red light state, moving vehicle in the lane and obstacle 

encountered in the same lane. These scenarios in the simulation 
environment are presented in Figure 11.  

 

                          (a)                                                          (b)  

 

                        (c)                                                                (d)  

 

                          (e) 

Figrue 11.  Carsim scenarios: (a) Path Following in lane; (b) Intersection with 
stop sign; (c) Crossing traffic passing by at intersection;; (d) Car follow while 
doing path following; (e) Obstacle in the lane (use stopping vehicle 
represented as an obstacle in the lane) 

While driving on the road facing different scenarios, the decision 
making framework will generate high level commands for the vehicle 
to respond to. As introduced in the previous section, inputs are index 
of the scenarios, and outputs are the driving states related to the 
commands. Here in the simulation, the outputs are set to be “1” for 
path follow, “2” for car follow with path following and “0” for stop 
and wait for other commands from the decision making framework. At 
the intersection, the vehicle waits for 3 seconds to check crossing 
traffic. When a vehicle is crossing, the Stop state will be triggered 
again for waiting. Then, a car in the same lane with the speed lower 
than speed limit triggers the decision making state flow switch to Car 
follow with path following state. The Stop drive state is switched to 
again when approaching a red traffic light as well as being close to the 
obstacle vehicle in front. The state vs time plot is shown in Figure 12. 
It shows how the simulation vehicles with our unified architecture 
respond to different scenarios. First, it comes to an intersection with 
the stop sign, the vehicle waits for 3 seconds after which it detects 
crossing traffic. The vehicle will keep waiting until the crossing traffic 
has left, then the drive state switches back to normal path following. 
Stop state is used due to red traffic light being on right after the Car 
follow with path following state. In the end, the vehicle stops and waits 
for the obstacle in the same lane. 
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                                                          (b)  

Figure 12. Drive State vs time plot; (a) Drive State in low speed vehicle model 
simulation; (b) Drive State in high speed vehicle model simulation; (Due to 
the faster speed, driving time is shorter than the previous simulation)  

The velocity for the low speed vehicle is set to be 10 𝑚𝑚/𝑠𝑠 and the high 
speed vehicle velocity is set to be 12 𝑚𝑚/𝑠𝑠. Distance for vehicle speed 
decreasing is 25𝑚𝑚  and the distance for following a vehicle is 
10 ~ 15 𝑚𝑚. 

Simulation result for robust lateral control 

Figure 13 shows the simulation results for a full run around the COSI 
route. Combining the lateral controller and decision making 
framework, simulation is made on the low shuttle vehicle on the test 
route for low speed application In this simulation, normal path 
following speed is set to be 5 𝑚𝑚/𝑠𝑠 and speed will decrease to 1 𝑚𝑚/𝑠𝑠 
during cornering. The tracking performance of the vehicle is 
acceptable.  

Conclusions and Future Work 

From the simulation results and demonstration, we have shown that the 
controller, especially the Finite State Machine based Decision Making 
Framework can work well for the Unified Architecture for high speed 
autonomous vehicle and low speed autonomous shuttle.  

However, more work needs to be done in the future. Functionality 
corresponding to the high level command needs to be improved such 
as better car following algorithm and collision avoidance. Localization 
based on 3D mapping will be studied as well.  

 

Figure 13. COSI pilot test route simulation results                                                                                           
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Abstract— Path planning is a crucial task in automated 

driving. Due to the complexity of dynamically changing driving 

environment, the planned path generally requires the capability 

to adjust itself in real time to avoid obstacles detected in its way. 

The use of an optimization method is able to generate a 

collision-free and smooth path. However, its high computation 

burden limits its direct application to online path planning. This 

paper proposed a time-efficient online table-lookup approach to 

deal with this dilemma. Given discrete target points, this 

approach is capable to form a quintic-spline path with 

second-order geometric (G2-) continuity using a look-up table. 

The look-up table was generated beforehand in the reference 

space with minimization on curvature variation. The paper 

demonstrates the application of this online approach in collision 

avoidance, with a geometry-based method to decide new target 

points when obstacles are detected in the original path. These 

new target points are fed to the table-lookup online path 

planning algorithm to generate a collision-free path with 

minimum curvature variation. 

I. INTRODUCTION 

Path planning is a challenging task for autonomous driving 
in a dynamically changing environment. The planned path 
should be collision-free with surrounding obstacles in the 
environment, while also smooth enough for the benefits of 
path following and passenger comfort. A poorly designed path 
would not only make the subsequent path following difficult, 
but may also cause passenger discomfort with exceedingly 
large lateral acceleration and yaw oscillation. To satisfy this 
multi-objective task, the optimization approach seems a good 
fit here, which is capable to weigh the relative importance of 
each objective within imposed constraints of kinematics and 
obstacles [1-3]. 

The collision-avoidance scenario is extremely time 
sensitive and demands a quick path re-planning especially at 
high speed. However, optimization approach is known not 
time-efficient since the optimization of the objective function 
takes place at each motion state [4]. The complexity of the 
optimization problem greatly increases if the optimal 
objective and constraints imposed become complicated. For 
this reason, online implementation of optimization is still 
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restricted with a trade-off between explicit representation and 
computational efficiency, and usually requires a 
high-performance in-vehicle PC for calculation [5, 6]. 
Meanwhile, the global optimum is difficult to find for a 
non-convex optimization problem. The optimization solution 
generally reduces to a local optimum in this case and may 
require another path selector to decide whether the planned 
path is acceptable or not [6, 7]. 

Instead of online optimization, path planning is usually 
divided into two phases, smooth path generation and afterward 
collision-free evaluation [8]. The optimization cost in the 
former phase can be reduced by precomputing lookup tables 
of path parameters offline. For example, [9, 10] parameterized 
control inputs and generated model-based trajectory from 
initial states to target ones via the 5D precomputed tables. The 
parameterization of these control inputs, however, is not 
inclusive sometimes [9].  

This paper similarly adopts the table-lookup approach but 
instead describes the path as quintic polynomials with 
parameters optimized to minimize the curvature variation. The 
dimension of lookup tables required is reduced with the 
introduction of a reference space. In the reference space where 
initial and target endpoints are fixed, lookup tables of optimal 
path parameters to minimize the curvature variation are 
constructed offline using optimization method at different sets 
of orientation angles and curvature values. In online 
implementation, two endpoints in each segment are 
transformed into the reference space where linear 
interpolations of the lookup tables are completed. A 
de-transformation is followed afterwards to obtain the optimal 
path with G

2
-continuity in real space. In this way, lookup 

tables up to four dimensions are sufficient within a small 
storage space. 

Collision avoidance scenario is chosen to demonstrate the 
applicability of the table-lookup path planning technique. A 
low-computation, geometry-based method is proposed to 
realize collision prediction and new target points generation 
based on an occupancy grid map. The generated four new 
target points are connected by the table-lookup approach to 
form a smooth collision-free path with minimum curvature 
variation.  

The paper is organized as follows: Section II demonstrates 
the table-lookup path planning approach. Section III 
introduces the geometry-based method to generate discrete 
target points in case of collision prediction. Section IV focuses 
on the steering controller for path following. This is followed 
by simulation results and discussion in a collision-avoidance 
scenario in Section V, combining the aforementioned 
techniques together.  
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II. PATH PLANNING 

A. G
2
-quintic Splines 

The path in this paper is described by a polynomial spline, 

with each segment expressed as a quintic polynomial p(), 

[0, 1]:  

  
 

 

2 3 4 5

0 1 2 3 4 5

2 3 4 5
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x x x x x x x
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    

      
p ,  (1) 

where xi, yi, (i=0, 1, …, 5) are polynomial coefficients to be 
determined. To determine these coefficients for each segment, 
the position, orientation and curvature information of the two 
endpoints are required (Fig. 1): 
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Figure 1. Interpolation conditions of the Endpoints 

It has been shown in [11] that if the polynomial 

coefficients could be expressed with respect to :=[1 2 3 

4]
T
  :=(0, )  (0, )  (-, )  (-, ) as follows, then 

the interpolation constraints are always fulfilled for any :  
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In this way, the quintic polynomial curve in (1) given the 
interpolation constraints is reduced to four design freedoms 

with the parameter . The optimization problem is 
formulated to minimize the maximum curvature variation: 

  
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min max (1)
d
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subject to  
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where s is the curvilinear length measured along the path p(),  

    
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ds
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The latter item in the objective function adds penalty to the 
planned path length s(1) weighted by w. The constraint (6a) is 
added to guarantee the regularity of the curve [11]. It is not 

difficult to show that the parameter  reflects the rate of 

change of curvilinear length s (or ds/d) with respect to : 
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Constraints (6b and 6c) are added to expect symmetric 

distribution of ds/d in u[0, 1] intuitively and simplify the 
solution to the above optimization problem.  

The minimization of curvature variation is set as the 
objective in order to reduce the steering variation, since the 

steering angle f is directly related to the travelled curvature 

  for a single-track vehicle model, 

  2

f us xL k V   ,  (9) 
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where L is the vehicle wheelbase, kus is the understeer gradient 
coefficient determined by vehicle mass distribution and tire 
cornering stiffness coefficients, and Vx is the vehicle 
longitudinal speed. Therefore, a planned path with less 
varying curvature is desired with smoother steering and few 
lateral acceleration perturbations.  

The minimax optimization problem could be transformed 
to a semi-infinite programming form as seen in [11]. The 
solution to this problem can be pursued by converting 
semi-infinite constraints to a set of finite constraints with peak 
values and then using the sequential quadratic programming. 
However, the solution to this semi-infinite programming 
problem comes with heavy calculation load and is hence not 
time-efficient. It also may give local optimum and sometimes 
even doesn’t guarantee a solution if the initial condition is 
poorly selected. These negative factors together limit its direct 
application in online path planning even though the path 
generated is ideal with minimum curvature variation.  

B. Table-lookup Path Planning  

Due to the difficulty of direct online implementation of the 
optimization method, the table-lookup approach is raised with 
the idea to obtain suboptimal path parameters from the lookup 
tables constructed beforehand with extensive offline 
programming. However, the different combination of 
coordinates, orientation and curvature values of the two end 
points (Fig. 1) requires a look-up table up to six dimensions 
with infinite choices of values.  

To reduce the complexity of dimensionality and save 
storage space, a reference space is formed where coordinates 
of endpoints A’ and B’ are fixed, for example at (0, 0) m and 

(10, 0) m respectively. Lookup tables of path parameters were 
constructed with respect to four-dimensional inputs of 
orientation angles and curvature values of the endpoints. The 

orientations A’ and B’ are defined in the range of [-/4, /4] 
rad, and the curvature κA’ and κB’ in the range of [-0.1, 0.1], 
each with a number of evenly divided grid of 20. The 
semi-infinite optimization problem (5) was solved offline at 
each combination of the defined orientations and curvature 
values. Fig. 2 shows the results of path trajectories, curvature 
and curvature variation value along the path at five different 

combinations of A’, B’, κA’, and κB’. Larger ranges of these 
lookup parameter values are unnecessary since the original 
endpoints problem can be divided with more medium points to 

fit inside the range of A’, B’, κA’, and κB’ after transformation 
into the reference space.  

From these optimization solutions, the path parameter ’ 
instead of the polynomial coefficients, xi’ and yi’ (i=0, …, 5) 
were stored into a total of four four-dimensional (4D) lookup 
tables to reduce table size.  

Fig. 3 shows the table-lookup path planning procedure. A 
transformation of the original endpoints into the reference 
space is required first. The constraints, i.e. orientation angles 
and curvature values, of the transformed endpoints A’ and B’ 
are then referred to the 4D lookup tables to obtain parameter 

values ’ through linear interpolation. This path found in the 
reference space is then reflected back to the original 
coordinate system through de-transformation process.  

 

 

 
(a) (b) (c) 

Figure 2. (a) Optimal polynomial curve, (b) curvature κ(), and (c) curvature variation dκ/ds() for some orientation angles and curvature of endpoints A’ and 
B’ in the reference space (legend shown in (b) ) 
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Figure 3. Table-lookup path planning procedure 
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1) Transformation 
To reflect the endpoints A and B to their counterparts A’ 

and B’ fixed in the reference space, coordinate scaling and 
rotation are required. The orientation angles and curvature 
values of the endpoints after transformation are:  

 'A A    ,       'B B    ,     (10a-b) 

 'A A

AB

A B
  

 
,   'B B

AB

A B
  

 
,     (10c-d) 

where  is the angle of line AB with respect to the abscissa 
axis (Fig. 3), and the Euclidean distance ||AB|| and ||A’B’|| are 
used to scale the curvature values into the reference space.  

2) Table lookup 

The A’, B’,  κA’, and κB’ after transformation are fed to the 

4D lookup tables to get the path parameter values of ’ 
through linear interpolation. The linear interpolation includes 
merely simple algebraic calculation and is not detailed here. 
Polynomial coefficients, xi’ and yi’ (i=0, 1, …, 5), can then be 

determined from parameter ’ with (3) and (4) respectively.  

3) De-transformation 
A de-transformation is necessary to reflect the polynomial 

coefficients, xi’ and yi’ (i=0, 1, …, 5), in the reference space 
back to the original coordinate systems. The polynomial curve 
in the real space has the relation below with its counterpart in 
the reference space: 
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where R  is the rotation matrix 
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The path parameters, xi and yi (i=0, 1, …, 5), for the 
original two endpoints problem can then be found easily by 
expressing (11) as  

    
T

5

2 6
1  


   p M ,     (13) 

where M  is the 26 matrix which contains the polynomial 
coefficients xi and yi (i=0, 1, …, 5). 

Fig. 4 shows that the suboptimal solution of the 
table-lookup path planning approximate very close to the 
optimization result with endpoints given at pA = [11, 99]

T
, pB 

= [-10, -10]
T
, A = -86.5

o
, B = -117.2

o
, κA = 0, and κB = 0 as an 

example. Similar results are obtained at other endpoints 
conditions, validating the applicability of the table-lookup 
approach in path planning. Besides, it takes much shorter time 
to implement, i.e. 7.3 µs on average in Simulink Desktop 
Real-Time™ environment, compared to semi-infinite 
programming (Table I). 

TABLE I. TIME COST COMPARISON 

 Semi-infinite programming Table-lookup approach 

Time cost 178.8 ms 7.3 µs 

 

III. GEOMETRY-BASED COLLISION-FREE TARGET POINTS 

GENERATION 

The proposed table-lookup path planning requires the 
information of discrete target points. These preview target 
points need to be generated dynamically to provide the vehicle 
the freedom to avoid obstacles in real time. There are several 
ways of generating these target points, such as elastic band 
[12, 13], and potential field methods [7, 14]. These two 
methods maintain the vehicle at a relative safe distance from 
the obstacle based on the defined elastic force or potential 
field. However, the absolute distance of the path from the 
obstacles are generally uncertain in the plan phase. Depending 
on the tuned algorithm parameters, the generated target points 
could be too conservative or close to the obstacles, neither of 
which is desirable for a collision-avoidance behavior. For this 
reason, a geometry-based method is proposed with ascertained 
absolute distance from obstacles and have the benefit of low 
computation cost.  

A. Collision Prediction 

A two-dimensional local occupancy grid map needs to be 

formed first with each grid cell size of 0.5m0.5m. In real 
world case, this grid map can be formed using sensors such as 
camera, radar and LIDAR. Information from these sensors 
could be used to update the map continuously while the 
vehicle is on the move, with the use of different packages 

 

 
(a) (b) (c) 

Figure 4. Comparison of table-lookup approach and optimization solution: (a) Path trajectory; (b) curvature κ and its variation dκ/ds; (c) polynomial 

coefficients xi and yi. 

 

Optimization 

Table Lookup 
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available in ROS. Some of the packages that can be used are 
the simultaneous localization and mapping (SLAM) algorithm 
[15, 16] packages such as Gmapping and Hector SLAM 
packages. A visualization of the LIDAR data that can be used 
for grid mapping is shown in Fig. 5 as an example, with data 
recorded with a Velodyne 16-channel LIDAR. This sensor 
will be used in real world implementation and experiments in 
future work. 

 

Figure 5. ROS visualization of LIDAR Data with surrounding environment 

The planned path assumes the vehicle as a point mass. To 
account for the size of the vehicle itself to avoid collisions, the 
grid areas of the objects in the grip map are enlarged to 
provide some conservativeness. The controller calculates a 
preview path trajectory with 100 m look-ahead distance and 
judges if potential collision is expected. The collision 
prediction algorithm first evaluates the grid cells where the 
future path goes through, and then checks if any of these 
pass-through grid cells coincide with any cell the obstacles 
occupy. If any coincidence is observed as seen in Fig. 6, 
potential collision would be expected and a new path is in need 
to avoid the obstacle.  

 
Figure 6. Preview path collides with obstacles 

B. Collision-free Target Points Generation 

If potential collision is expected through the collision 
prediction module, then new collision-free target points need 
to be generated. Assuming P and Q are the corners where the 
future path enters and exits the obstacle (Fig. 7), the start and 
end target points A and B can be found in the original path 
with a travel distance s before P and after Q respectively:  

  max , 5xs V t m  ,        (14) 

where Δt is a time constant and 5m is the minimum allowable 
reserved distance. Notice that in application the 
decision-making module also needs to be designed and decide 
whether to stop or pass the obstacle considering other traffic. 
Longitudinal speed profile should be designed accordingly. 
This paper mainly focuses on online path planning so 
decision-making and speed profile design are not covered 
here.  

The intermediate target points are found as follows. The 
idea is to shift line PQ parallelly with step size 0.5m until a 
collision-free parallel line l is found (Fig. 7). [17] directly 
chose a single target point E closest to the final parallel line l to 
form a two-segment evasive path together with points A and 
B. However, if the obstacle is not convex as in the case of Fig. 
7, the planned path A-D-B might still collide with the obstacle 
and requires another or more path planning procedures 
afterwards. These extra computations can be avoided by 
designing a three-segment evasive path instead. The idea is to 
find the widest potential collision points C’ and E’ along the 
shift direction and reflects these two points to the parallel line l 
as C and E. The evasive path A-C-E-B is then ascertained to 
avoid the obstacle with one computation.  

 

Figure 7. Illustration of collision-free target points generation 

Besides the locations of the collision-free target points, 
orientation angles and curvature information at these points 
are still needed before linear interpolation to the lookup tables 
generated in Section II to form the path. The orientation and 
curvature values for points A and B are known from the 
original planned path. For points C and E, orientation angles 
are set to the angle of line l with respect to the abscissa axis 
and curvatures to 0 in order to form a straight path segment 
CE.  

C. Online Path Planning and Update 

Given the target points A, B, C and E generated with the 
geometry-based method, each segment could be formed with 
the two neighboring endpoints through the table-lookup 
procedure: transformation, lookup, and de-transformation (Fig. 
3). The three segments together form a spline with 
second-order geometric (G

2
) continuity, because curvature at 

the endpoints and in between are both continuous. 
To update the path information, the neighboring segments 

before target point A and after point B are also re-planned 
because the original path segments (the mth and nth segment 
shown in Fig. 8) were broken apart by A and B. Therefore, a 
total of only five segments are constructed with the 
table-lookup online path planning method. The five segments 
are inserted between the original (m-1)th and (n+1)th 
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segments to form the new path with updated segment order 
(Fig. 8).  

A

m-1

C E

B

m n n+1

m�

m�  

m�  

m�  

m�  

Original 

Segment No.

Updated Segment No.

 

Figure 8. Original and updated path segments along with their orders 

The updated path information is then used to form a new 
preview path trajectory. The process of collision prediction 
and re-planning is then continued based on the new preview 
path. Therefore, dynamically moving object and more 
obstacles could be taken into account with the proposed 
table-lookup online path planning approach.   

IV. PATH FOLLOWING CONTROL 

The path following control determines the steering angle 

f  at the front wheel and is comprised of three parts, 

 
feedforward proportional integral+f      . (15) 

where  

  2

feedforward us xL k V    , (16) 

  proportional sinp p sk y k e l         , (17) 

 
integral

0
dt

t

ik e    , (18) 

L is the vehicle wheelbase length, e is lateral error, Δ is 

heading angle error, y is the look-ahead error, kp is the 

proportional feedback gain, and ki is the integral coefficient to 

reduce the steady-state tracking error. 

The proportional gain kp and the look-ahead distance ls 

were selected with the parameter space approach [18, 19] at 

each speed to ensure robustness over uncertainty range of 

vehicle mass m[1700, 2060] kg and tire saturation 

coefficient [(Vx), 1]. Fig. 9 shows the selected values of 

(ls, kp) at speed 5m/s in the parameter space where D-stability 

region, steering overshoot and peak lateral deviation contours 

are shown at uncertainty apices. Similarly we choose the 

values of (ls, kp) at other speeds (Fig. 10) to form a 

speed-dependent gain-scheduling path following control 

strategy. 

V. RESULTS 

Simulation was carried in Simulink to validate the 

table-lookup online path planning technique along with the 

geometry-based target points generation method in the 

scenario of collision avoidance. A high-fidelity vehicle model 

in CarSim with parameters customized to match our 

experiment vehicle Ford Fusion was used during the 

simulation. The scenario was created at a typical road curve 

with an obstacle in the original planned path for the vehicle. 

The obstacle has an irregular shape in order to evaluate the 

 
(a) 

 
(b) 

Figure 9. D-stability and performance contours mappings in the parameter 

space of (ls, kp) of two uncertainty apices at 5m/s as an example (Red cross 

represents the picked values of (ls, kp) at this speed) 

 
Figure 10. Robust D-stability region and (ls, kp) chosen at each speed 

capability of the online path planning to decide an appropriate 

surpass distance.  

Fig. 11 shows the result of the aforementioned online path 

planning technique with the original and updated path, 

vehicle trajectory, and the obstacle highlighted in an 

occupancy grid map. The vehicle followed its original 

planned path and online path planning was inactive until the 
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vehicle reached the asterisk position (Fig. 11) where the 

preview path was found in collision with the detected 

obstacle. Four new targets labeled in cross (Fig. 11) were 

generated based on the obstacle shape with the 

geometry-based method along with their orientation and 

curvature information. These target points were interpolated 

into the lookup tables generated before to form a 

collision-free path with minimum curvature variation. A total 

of five new segments in solid line (Fig. 11) were constructed 

with the table-lookup approach and in replacement of the 

original path along with an updated segment order.  

 

Figure 11. Online path planning result with an obstacle at a road curve 

Fig. 12 shows a zoom-in of Fig. 11 where the cross area of 

the original preview path and the predicted collision area with 

the obstacle are highlighted. It can be seen that the two 

generated intermediate target points have accounted for the 

widest potential collision in the path shift direction with the 

proposed geometry-based method. The vehicle trajectory also 

shows good following performance with steering control at 

the speed of 15 m/s.  

 

Figure 12. A zoom-in of Fig. 12 showing the widest potential collision points 

were accounted for an irregular-shaped obstacle with the geometry-based 

method  

The updated path shows a smooth transition from the 

original path to the updated segments to evade the obstacle 

(Fig. 11). Curvature change is continuous along the updated 

path (Fig. 13), with a minimization of curvature variation 

ensured by the beforehand generated lookup tables with 

optimization approach. The smooth curvature change is 

desired as it directly affects steering as seen in (9). The 

segment nodes before and after path updating were also 

shown in Fig. 13 to illustrate the path updating process in Fig. 

8.  

 

Figure 13. Curvature of the original and updated path and their corresponding 

segment nodes 

Fig. 14 shows the steering and path following performance 

for the collision avoidance scenario. The steering along with 

yaw rate and lateral acceleration is smooth thanks to the 

G
2
-continuity of the updated path, which improves passenger 

comfort. Besides, the lateral error and heading angle error are 

within acceptable range, validating the effectiveness of the 

designed path following controller.  

 

Figure 14. (a) Steering control, (b) lateral and look-ahead error, (c) heading 

angle error, (d) vehicle yaw rate and lateral acceleration during the collision 
avoidance at 15 m/s 
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VI. CONCLUSION 

A time-efficient table-lookup path planning technique was 

proposed and developed. In combination with a 

geometry-based target points generation method, this 

approach is capable to update a collision-free path to avoid 

obstacles. Although not shown in the simulation here, the 

technique is potential to expand the scenarios with more 

obstacles or dynamically changing obstacles. A future 

experiment will be conducted with our experiment vehicle to 

validate the real-time performance of the table-lookup path 

planning approach.  

REFERENCES 

[1]  J. Ziegler, P. Bender, T. Dang and C. Stiller, "Trajectory planning for 

Bertha—A local, continuous method," in Intelligent Vehicles 

Symposium Proceedings, 2014 IEEE, pp. 450-457, 2014. 

[2] T. Gu and J.M. Dolan, "On-road motion planning for autonomous 

vehicles," in International Conference on Intelligent Robotics and 

Applications, pp. 588-597, 2012. 
[3]  X. Li, Z. Sun, D. Cao, D. Liu and H. He, "Development of a new 

integrated local trajectory planning and tracking control framework for 

autonomous ground vehicles," Mechanical Systems and Signal 
Processing, vol. 87, pp. 118-137, 2017. 

[4]  D. González, J. Pérez, V. Milanés and F. Nashashibi, "A review of 

motion planning techniques for automated vehicles," IEEE 
Transactions on Intelligent Transportation Systems, vol. 17, pp. 

1135-1145, 2016. 

[5]  C. Katrakazas, M. Quddus, W. Chen and L. Deka, "Real-time motion 
planning methods for autonomous on-road driving: State-of-the-art and 

future research directions," Transportation Research Part C: Emerging 

Technologies, vol. 60, pp. 416-442, November 2015. 2015. 
[6]  L.B. Cremean, T.B. Foote, J.H. Gillula, G.H. Hines, D. Kogan, K.L. 

Kriechbaum, J.C. Lamb, J. Leibs, L. Lindzey and C.E. Rasmussen, 

"Alice: An information‐ rich autonomous vehicle for high‐ speed 
desert navigation," Journal of Field Robotics, vol. 23, pp. 777-810, 

2006. 

[7]  D. Dolgov, S. Thrun, M. Montemerlo and J. Diebel, "Path planning for 
autonomous vehicles in unknown semi-structured environments," The 

International Journal of Robotics Research, vol. 29, pp. 485-501, 2010. 

[8]  S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. 
Diebel, P. Fong, J. Gale, M. Halpenny and G. Hoffmann, "Stanley: The 

robot that won the DARPA Grand Challenge," Journal of Field 

Robotics, vol. 23, pp. 661-692, 2006. 
[9]  D. Ferguson, T.M. Howard and M. Likhachev, "Motion planning in 

urban environments," Journal of Field Robotics, vol. 25, pp. 939-960, 

2008. 
[10]  X. Li, Z. Sun, D. Cao, D. Liu and H. He, "Development of a new 

integrated local trajectory planning and tracking control framework for 

autonomous ground vehicles," Mechanical Systems and Signal 
Processing, vol. 87, pp. 118-137, 2017. 

[11]  C.G.L. Bianco and A. Piazzi, "Optimal trajectory planning with quintic 

G/sup 2/-splines," in Proceedings of the IEEE Intelligent Vehicles 
Symposium, pp. 620-625, 2000. 

[12]  H. Wang, A. Tota, B. Aksun-Guvenc and L. Guvenc, "Real time 

implementation of socially acceptable collision avoidance of a low 
speed autonomous shuttle using the elastic band method," 

Mechatronics, vol. 50, pp. 341-355, 2018. 

[13]  M.T. Emirler, H. Wang and B. Aksun-Guvenç, "Socially acceptable 
collision avoidance system for vulnerable road users," in IFAC Control 

in Transportation Systems, vol. 49, pp. 436-441, 2016. 

[14]  L. Tang, S. Dian, G. Gu, K. Zhou, S. Wang and X. Feng, "A novel 
potential field method for obstacle avoidance and path planning of 

mobile robot," in 3rd IEEE International Conference on Computer 
Science and Information Technology, pp. 633-637, 2010. 

[15]  J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J.Z. 

Kolter, D. Langer, O. Pink and V. Pratt, "Towards fully autonomous 
driving: Systems and algorithms," in IEEE Intelligent Vehicles 

Symposium, pp. 163-168, 2011. 

[16]  T. Luettel, M. Himmelsbach and H. Wuensche, "Autonomous ground 

vehicles—Concepts and a path to the future," in Proceedings of the 
IEEE, vol. 100, no. Special Centennial Issue, pp. 1831-1839, 13 May 

2012. 

[17]  L. Han, H. Yashiro, H.T.N. Nejad, Q.H. Do and S. Mita, "Bezier curve 
based path planning for autonomous vehicle in urban environment," in 

IEEE Intelligent Vehicles Symposium, pp. 1036-1042, 2010. 

[18] L. Guvenc, B. Aksun-Guvenc, B. Demirel and M.T. Emirler, Control of 
Mechatronic Systems, Institution of Engineering and Technology, 

2017. 

[19] J. Ackermann, Robust control: the parameter space approach, 
Springer Science & Business Media, 2012. 

 

  
 

 

676



 

 

 

 

Abstract—This paper introduces a unified, scalable and 

replicable approach to make implementation of the autonomous 

system on a new vehicle faster while preserving its autonomous 

performance. The main idea of this approach is to create a 

standard hardware architecture, along with a Simulink or 

similar library and templates for autonomous driving for a 

unified approach to vehicle autonomy, making it easier to scale 

the solution and replicate it on other vehicle platforms. 

However, this scaling and replicating of the autonomous driving 

system between vehicles remains difficult especially for 

low-level controller design due to parametric difference between 

vehicles. This paper, hence, demonstrates a sequential controller 

design procedure with specific example of lateral control for a 

chosen vehicle. The same design process can be replicated to 

adapt controller parameters for other vehicles. The parameter 

space approach is applied here to ensure robust path following 

performance of a proportional-derivative (PD) steering 

controller, considering uncertainties of vehicle load, speed and 

tire cornering stiffness. To further reduce the tracking error 

and handle unmodeled dynamics and reject disturbances, a 

model regulator was added based on overall system analysis. To 

evaluate the control strategy, a validated high-fidelity model of 

an autonomous research vehicle is used within a 

hardware-in-the-loop (HIL) simulation environment. Soft 

sensors were also connected to the soft automated vehicle in the 

HIL environment to test high-level control and decision making 

mechanisms. The road used for the simulations is a replica of a 

designated real world short AV pilot route in the Ohio State 

University West campus. Traffic is generated with Simulation of 

Urban MObility (SUMO) software in order to analyze the 

problems due to the presence of other vehicles and evaluate 

performance more realistically in the HIL simulator.  

 

I. INTRODUCTION 

Solutions to autonomous driving or advanced driver 
assistance systems (ADAS) continues to grow interest from 
research and industry. Traditional Original Equipment 
Manufacturers (OEMs) and software-based technology 
companies have mainly focused on passenger vehicle 
solutions due to its largest market share, while start-up 
companies have been working mostly on niche markets like 
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low-speed autonomous shuttles operating on a fixed route. 
Regardless of different applications, their research and 
product development involve similarity and redundancy in 
some aspects. Meanwhile, as autonomous driving technology 
is advancing and series production would be expected in the 
near future, extensive testing processes for autonomous 
vehicles will be necessary. A standardized in-the-lab testing 
process is crucial to ensure that all autonomous driving 
functions operate as planned before proceeding with public 
road testing and deployment. 

Therefore, a common and unified architecture of road 
vehicle autonomy that is easily scalable and replicable is 
beneficial for fast product development, saving development 
resources, and facilitating the validation process. There are 
examples of unified architectures that have already been 
investigated by several researchers [1-3]. In our work, these 
goals are achieved by defining a standard hardware 
architecture, by forming a software library and developing 
generic autonomous driving functions at different levels of 
vehicle autonomy [4]. 

Replicability of this unified architecture and scalability of 
the high-level decision making and low-level controllers are 
crucial to ensure easier implementation on various vehicle 
platforms [5]. Along with the unified structure, control 
algorithms also need to be replicable and scalable. This is 
challenged by significant parametric differences between 
vehicles. A standardized design procedure for vehicle control 
is, therefore, needed, to realize replicability and scalability.   

In this paper, the design procedure for robust vehicle 
lateral control to follow the planned path is focused upon and 
the efficacy of our proposed approach is demonstrated by 
using our neighborhood electric vehicle (Dash), an 
experimental autonomous shuttle, as an example. The same 
control architecture and design procedures can be replicated 
for other vehicle platforms to adapt controller parameters. 
Indeed, the hardware and software libraries and basic 
autonomous driving functions were borrowed, scaled down 
and replicated from our 2017 Ford Fusion Hybrid research 
autonomous vehicle. In the steering control application 
considered here, path following performance should be 
ensured despite parameter variations like vehicle load, speed 
and tire cornering stiffness. This demands a robust design for 
the lateral control by taking these uncertainties into 
consideration. This paper proposes a robust proportional- 
derivative (PD) controller design using the parameter-space 
approach. D-stability and mixed-sensitivity requirements were 
imposed to ensure its robust performance. To further reduce 
tracking error, a model regulator was also designed in 
combination with the robust PD controller.  

The organization of the paper is as follows. Section II 
describes the unified architecture and automation library. 
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Section III shows the design procedures of the robust PD 
controller and add-on model regulator by taking the Dash 
vehicle as an example. Section IV depicts the high-level 
decision making strategies. Section V explains the validation 
and evaluation of the control strategy along with sensor 
placement and autonomous decision making within the 
hardware-in-the-loop environment. This is followed by the 
simulation validation of the overall unified architecture and 
our conclusions.  

II. UNIFIED ARCHITECTURE AND  

AUTOMATION LIBRARY 

Our previous work [4,6] on unifying the structure with 
scalability and replicability is to create a standard base for 
hardware structure along with a library to be used by 
developers for faster and easier automation of vehicles. 
Hardware structure includes different types of sensors to 
achieve enough coverage, resolution and also robustness to 
external disturbances. Data from these sensors is being 
processed by a high processing power computer to create 
meaningful information, which is used by a low-level 
controller, i.e. a dSpace MicroAutobox in our vehicles, to 
drive the vehicle autonomously by interfacing with actuators 
and sending necessary commands. The unified architecture is 
shown in Fig. 1.  
 

 

Figure 1. Unified architecture. 

Using this unified architecture, two different sized vehicles 
were automated. Perception sensors such as Lidar, Camera, 
Radars are implemented as well as GPS Sensor for 
localization. The dSpace MicroAutobox unit is used for low 
level controls and an in-vehicle Linux PC with a GPU is used 
for sensor data computation. Moreover, DSRC (dedicated 
short-range communications) radios are added to have the 
capability of communicating with other vehicles, pedestrians, 
bicyclists and infrastructure. Pictures of the vehicles and the 
implemented hardware were shown in our previous papers as 
well as the evaluation of the scalability approach. 
Along with the unified architecture, a unified Simulink 
library was created. This library shown in Fig. 2 consists of 
different types of blocks, including low-level control blocks 
for steering, throttle, brake, shift; sensor blocks for receiving 
data from the sensors in order to have environment perception 
and localization; and finally control and decision-making 
blocks for low and high level control of the autonomous 
vehicle. We are currently extending this library for use with 
NVIDIA Drive PX 2 GPUs. It is slightly modified for CarSim 

soft sensors and then used in the HIL simulations reported in 
this paper.  

 
Figure 2. Simulink vehicle automation library. 

III. VEHICLE LATERAL CONTROL 

Vehicle longitudinal control is realized by tuning a PID 
controller to follow the speed profile and so is not covered 
here for the sake of brevity. This paper describes the design of 
lateral control in detail as it is crucial for path following 
performance. The vehicle lateral control is comprised of a 
robust proportional-derivative (PD) controller and an add-on 
model regulator. While this section took the Dash vehicle as 
an example, the same lateral control structure and design 
procedures could easily be applied to other vehicles.  

A. Vehicle Model 

The bicycle model was used to design the lateral control, as 
depicted in Fig. 3.  

 
Figure 3. Bicycle model and its deviation from the path 

The state-space equation to describe the vehicle states and its 
deviation from the planned path is [7]: 
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
 are lumped tire cornering stiffness for front and 

rear sets of tires respectively; 
x

V  is the vehicle longitudinal 

speed; 
f

l , 
r

l  are the lengths from the vehicle center of 

gravity to its front and rear axle respectively;   is the side 

slip angle; r  is the yaw rate of the vehicle;   is the vehicle 

heading angle error from the path; 
f

  is the steering angle of 

the front wheel; 
ref

  is the planned path curvature; y  is the 

look-ahead error from the path at forward distance 
s

l  and can 

be calculated from lateral error e  and heading error  : 

 
s

y e l    , (2) 

m m  , and 
z z

I I   are defined as virtual mass and 

virtual yaw moment inertia,   is the tire saturation parameter 

[8]. In this way, the vehicle mass and the tire coefficient   

are lumped together for the convenience of uncertainty 
analysis. 
Since the Dash vehicle is operated at low-speeds without 

extreme behaviors, the uncertainties in the vehicle lateral 

dynamics are defined accordingly. The vehicle mass is 

estimated to be inside the range of [300, 500] kg ranging from 

its curb mass to full-load with two passengers, the velocity is 

within [2, 10] m/s, and the tire saturation parameter varies 

between [0.5, 1]. Its uncertainty region is depicted in Fig. 4, 

along with the platform 2017 Ford Fusion Hybrid which has 

higher mass and speed range. 

 
Figure 4. Uncertainty region of vehicle mass m, longitudinal speed Vx and 

parameter  for Dash and Fusion experiment platforms. 

B. Robust Proportional-Derivative Steering Control 

A robust proportional-derivative (PD) controller was 

designed with feedback of look-ahead error y  to follow the 

planned path in the presence of model uncertainties:   

   p d
C s k k s   (3) 

D-stability requirement was raised to ensure converged 

system response within setting time of 8 sec and damping 

ratio larger than 0.4. These requirements were reflected in the 

D-stability region in s-plane (Fig. 5) with 0.5  , 100R   

and 66.2   .  

 
Figure 5. Illustration of D-stability region in the complex plane.  

To take both tracking performance and robustness to model 

uncertainties into account, the mixed sensitivity criterion was 

considered. The robust performance can be ensured by 

satisfying: 

 1
S T

W S W T


  ,  (4)  

or equivalently 

 1
S T

W S W T    , (5) 

where S  is sensitivity function, T  is complementary 

sensitivity function, 
S

W  and 
T

W  are weights for S  and T  

respectively. The inverse of the sensitivity function weight is 

chosen as  

  
1 s s

S s

s s

s l
W s h

s h





 



, (6) 

with 0.5
s

l   being the low-frequency sensitivity bound, 

4
s

h   being the high-frequency sensitivity bound, and 

3
s

   rad/s. The complementary sensitivity function weight 

is chosen as 

   T T

T T

T T

s l
W s h

s h









, (7) 

where the low-frequency gain is 0.2
T

l  , the high-frequency 

gain is 2
T

h   (corresponds to uncertainty up to 200% at high 

frequencies), and the frequency of transition to significant 

model uncertainty is 20
T

  rad/s. 

The parameter space approach [9] is able to reflect the 

D-stability boundaries and mixed sensitivity point conditions 

to the design space of controller parameters 
p

k  and 
d

k . The 

parameter space for the four vertices of the uncertainty region 

is shown in Fig. 6 (a-d). The colored lines are reflections of 

D-stability boundaries of same colors as in Fig. 5. The points 

of blue envelop curves were obtained by substituting different 

frequency values at critical condition of (5). The PD 

controller parameter was hence selected to be 0.5
p

k  , 

0.035
d

k   as indicated with the red cross in the overlapped 

selectable region (Fig. 6 (e)), satisfying the design 

requirements at all four uncertainty vertices. The correspond- 
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Figure 6. Parameter Space region at apex (a) P1 (b) P2 (c) P3 (d) P4 and (e) overlapped selectable region;  

(f) Robust performance with selected PD parameters (red cross) at each apex. 

ing 
S T

W S W T  magnitude plot at each vertex of the 

uncertainty region is shown in Fig. 6(f) and validates that the 

mixed sensitivity constraint is met. 

C. Add-on Model Regulator 

To further reject the look-ahead error, a model regulator was 

added together with the previously designed robust PD 

controller (Fig. 7). The model regulator, also referred to as 

disturbance observer, is proven effective in disturbance 

rejection and in achieving insensitivity to modelling errors. 

Its applications in for example in direct drive positioning [10] 

and friction compensation [11] are successful.  
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Figure 7. System diagram with the PD controller and model regulator. 

The filter Q(s) is chosen to make inverse of nominal model 

Q/Gn(s) causal with a cutoff frequency at 10 rad/s: 

  
 

2

1

0.1 1
Q s

s



. (8) 

Since the steering is also affected by the look-ahead error 

through the PD control C(s), the design of model regulator 

should consider the overall system. The loop gain is: 

  
 /

1

ua n
G C Q G

L s
Q





. (9) 

Transfer function of look-ahead error over path curvature and 

noise can be expressed as: 
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Curvature of the path usually only presents low-frequency 

characteristic. Therefore to further reject the response of 

look-ahead error due to curvature, 
ref

y    should approach 

zero at low frequency. To reject noise influence, y n  

should have small amplitude at high frequency. Considering 

the characteristic of the filter Q(s), if the nominal model 
n

G  

is chosen to approximate 
ua

G  closely at high frequency, the 

stated requirements can be satisfied.  

The transfer function of  ua
G s  and  ref

G s  have the form: 

 
 

2

2 1 0

2 2

2 1 0

ua

n s n s n
G

d s d s d s

 


 
,  (12) 

ref 
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s
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V
l V s
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G s

s

 
 

 
  , (13) 

where the coefficients 
i

n , 
i

d  ( i =1,2,3) are related to vehicle 

parameters. Frequency responses of  ua
G s  at the 

uncertainty vertices of Fig. 4 are shown in Fig. 8 and exhibit 

large differences at low frequencies. 

 

Figure 8. Magnitude  ua
G j  for the four vertices. 

It could be observed that the magnitude of  ua
G j  are 

similar at high frequency for the vertices of the uncertainty 

region. Therefore, we could use a single nominal model 

 n
G s  to approach  ua

G s  at high frequency for all the 

conditions inside the uncertainty region: 

  
2

n

n

k
G s

s
 , (14) 

where magnitude of  n
G s  at 

n
k =300 was also shown as the 

dashed line in Fig. 8.  

The magnitude responses y u , 
ref

y   and y n  before 

and after adding the designed model regulator are shown in 

Fig. 9. The magnitude y u  converges especially below 

cut-off frequency of filter Q(s), suggesting good model 

regulation effect. 
ref

y   showed effective rejection of path 

curvature at low frequency, meaning steady-state tracking 

error will be greatly reduced. Meanwhile, the noise rejection 

still remains satisfactory at high frequency as seen from 

y n .  

IV. RULE BASED DECISION MAKING 

To accomplish the function of auto-driving, considering road 

traffic and infrastructure, we design a control logic based on 

rule-based decision-making method. Information about 

desired path, ego-motion, traffic sign and traffic light is 

provided by the in-vehicle Linux PC or sensors directly. The 

decision making used in the autonomous drive in our AV test 

pilot route (from Car to Car West) is represented as a FSM 

(Finite Sate Machine) in Fig. 10. 

 

Figure 9. Magnitude y u , 
ref

y   and y n  before and after applying 

model regulator. 

 
Figure 10. Decision making chart for autonomous drive. 

At the Initialize state, the vehicle checks whether all sensors 
are working properly. Other states are explained below:  

 Path Following: the vehicle goes along the planned path 
with the aforementioned lateral control algorithm.  

 ACC (Adaptive Cruise Control) Path Following: When a 
vehicle is detected in front, the ego-vehicle adapts its peed 
to the target while following the planned path. 

 Traffic Light Maneuver: Trigger when receiving traffic 
signal phase and timing (SPaT) information: If the light is 
Green, our vehicle will check crossing traffic until the road 
is clear and switch back to path following; if the light is 
yellow or red, it will be triggered to stop at the traffic light to 
wait for the red light turning into green.  

 Intersection Maneuver: Triggered when the vehicle comes 
to an intersection or a stop sign, ego-vehicle will wait at the 
intersection, detecting crossing traffic until the road is clear.  

Based on the control logic, the soft version of our Dash 
autonomous vehicle was able to run the shuttle task with the 
designed low level robust steering and speed controllers, 
without running into problems in repeated simulations with 
random traffic in our HiL simulator.  
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V. HIL ENVIRONMENT AND SIMULATIONS 

To extensively evaluate the performance of the developed 

control strategy, along with high level control, decision 

making and sensor placement, a hardware-in-the-loop (HIL) 

simulator is employed (Fig. 11). A high-fidelity CarSim 

vehicle model runs in dSpace Scalexio HIL platform to 

simulate vehicle lateral and longitudinal motions alongside the 

perception sensors in real time, while the MicroAutobox 

controller implements the actual control scheme at 100Hz 

sampling frequency.  

 
Figure 11. Hardware-in-the-Loop setup 

A. Slalom Path 

Fig. 12 shows the reference slalom path and the trajectory of 

Dash at 10m/s with the designed lateral control, along with 

another of Ford at 30m/s following the same lateral control 

design procedure. Both vehicles were able to follow the 

slalom path of tracking error within 0.15 m, suggesting the 

replicability of the lateral control design procedure. 

The effect of the added model regulator was also proved to be 

effective in reducing look-ahead error as compared to the use 

of the PD steering controller alone (Fig. 13). The steering 

angle and yaw motion during the process were without 

apparent oscillation (Fig. 14). Contributions from PD 

controller and model regulator respectively are also shown in 

Fig. 14.  

B. CARWest-to-CAR Route 

The OSU AV pilot test route from CAR West (our lab 

location) to CAR (Center for Automotive Research – our main 

research center) shown in Fig. 16 was chosen and constructed 

in CarSim to evaluate the vehicle’s decision making and 

lateral control performance. To incorporate the real traffic into 

simulation, information about other vehicles on the road were 

imported from SUMO software (Fig. 15).  

 

  
Figure 12. Slalom trajectory of Dash 

at 10m/s and Ford at 30m/s. 

Figure 13. Look-ahead error with 

and without model regulator (Dash 

10m/s). 

 
Figure 14. Steering, tracking error and yaw rate of slalom test (Dash 10m/s). 

 
Figure 15. Constructed road with traffic in Carsim. 

Placement and field of view (FOV) of the sensors described 

in section II can be seen in Fig. 17. These were implemented 

as soft sensors in the HIL simulator. 

 
Figure 16. CARWest-to-CAR route.  

 

 

Stop Sign Traffic Light 

START 

END 
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Figure 17. Placement and FOV of the sensors on the car. 

Scenarios including stop sign, crossing traffic and traffic 

lights were simulated on the route in Fig. 16 to test the 

decision-making strategies introduced in Section IV. Fig. 18 

shows the vehicle speed, steering and tracking error along the 

route. Since sharp turns appear when entering and exiting the 

main straight road, lateral error e was expectedly high for 

these two cases, but the look-ahead error y which combines 

the lateral and heading angle error was still relatively small. 

 

Figure 18. CARWest-to-CAR AV pilot test route simulation results. 

(A-close to stop sign; B-traffic crossing; C-traffic light nearby and 

turns red; D-traffic light turns green) 

CONCLUSION 

A unified and replicable approach on lateral control design 

procedure based on robust PD controller with parameter 

space design and add-on model regulator is introduced. HIL 

test on slalom path suggested good path following 

performance of the lateral control and its replicability to 

another larger vehicle platform. The lateral control was 

integrated with our previous developed unified, scalable and 

replicable autonomous driving solution. Decision-making 

strategies, sensor perception and lateral control were 

evaluated in the Ohio State University AV pilot test route 

with random traffic in a simulation study. Autonomous 

shuttles are planned to be used on this short route and then 

extended to the rest of the university campus. The approach 

used in this paper presented a method of in-lab evaluation in a 

realistic traffic environment for identifying and fixing 

possible problems before an actual deployment. A future 

experiment will be conducted with our experimental vehicles 

to evaluate our unified architecture.  
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Abstract

Advances in sensor solutions in the automotive sector 
make it possible to develop better ADAS and autono-
mous driving functions. One of the main tasks of 

highway chauffeur and highway pilot automated driving 
systems is to keep the vehicle between the lane lines while 
driving on a pre-defined route. This task can be achieved by 
using camera and/or GPS to localize the vehicle between the 
lane lines. However, both sensors have shortcomings in certain 
scenarios. While the camera does not work when there are no 
lane lines to be detected, an RTK GPS can localize the vehicle 
accurately. On the other hand, GPS requires at least 3 satellite 
connections to be able to localize the vehicle and more satellite 
connections and real-time over-the-air corrections for lane-
level positioning accuracy. If GPS localization fails or is not 

accurate enough, lane line information from the camera can 
be used as a backup. In this paper, a vision based lane keeping 
system is aided by a GPS based path following application to 
overcome the shortcomings of the GPS and camera sensors 
when used alone in highway driving path following applica-
tions. The developed system has a parameter space based 
robust steering controller which can handle lateral motion 
control of the vehicle based on path tracking error detected 
using the GPS or camera sensor. The designed control system 
works for both low speed and high-speed driving scenarios 
and is robust to changes in vehicle mass. The results are 
demonstrated using the validated model of our 2017 Ford 
Fusion Hybrid research automated driving vehicle in our 
hardware-in-the-loop simulator. Experimental verification is 
also planned.

Introduction

There are six automated driving levels defined in new 
SAE International standard J3016 varying from 0 to 5 
[1], where 0 represents the no automation case and 5 

represents the fully autonomous driving case with no human 
intervention. This paper will cover a lane keeping application 
for a vehicle already equipped with an adaptive cruise control. 
This automation level falls within Level 2 which is partial 
automation where the steering and acceleration of the vehicle 
are handled by the automated driving system but the driver 
is still in the loop. This is an initial part of our work aimed at 
developing a Level 3 Highway Chauffeur and a Level 4 
Highway Autopilot in a realistic hardware-in-the-loop simula-
tion (HIL) environment.

In the literature and in production level vehicles, there 
are many lane-keeping and lane departure warning applica-
tions. For instance, Tuncer et al. worked on developing a lane 
keeping system when the driver is inattentive [2]. In their 
application, a camera based lane keeping controller is designed 
and simulated in the HIL simulator. Kang et al. proposed a 
solution for estimating the lane positions for short term lane 
information lost from the camera [3]. Although lane keeping 
applications and path fallowing applications are thoroughly 
studied in the literature, the failure of the existing systems 
would not be acceptable for a fully autonomous vehicle system. 

Considering many of these systems are using the camera to 
detect the lane lines and localize the vehicle in the lateral 
direction, the failure of the camera detection would result in 
failure to keep being within the lane. As highlighted in the 
work of the Yenikaya et al. [4], some of the camera detection 
failures can be caused by the absence of the lane lines, poor 
lane line quality, shadow on the lane lines, or other vehicle 
occlusions. The camera may also completely fail to work or 
communicate with the controller. Today high accuracy GPS 
units are also available for accurate localization. For example, 
the GPS unit used in our experimental vehicle OXTS xNAV550 
has 1.6 m accuracy with single antenna, 0.4 m for DGPS mode 
and up to 2 cm for RTK mode using a base station. Also with 
the use of online RTK correction services and RTK Bridge 
units it is possible to have RTK corrections without a base 
station. In the case of using RTK bridge unit, accuracy of the 
system is around 5 cm.While today RTK GPS units are very 
expensive as compared to the cameras, they are getting 
cheaper with the advance of the technology. Therefore, usage 
of a GPS based lane level path fallowing algorithm is suggested 
as one of the backup solutions for the camera failure cases. 
One might ask why GPS system is not used solely for the lane 
keeping application. This is because the GPS system also has 
its own shortcomings. If the RTK corrections for the GPS are 
not available or the lane level map of the environment is not 
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available, it is not possible to localize the vehicle within lane 
level accuracy. Therefore, a combination of the camera and 
GPS solution is preferred over using them alone by themselves.

The rest of the paper has sections in the following order: 
Lateral vehicle model, lane detection, path generation, lateral 
deviation calculation, lateral controller design, simulation 
results and summary/conclusions.

Lateral Vehicle Model
In this paper, lateral dynamics of the vehicle is modeled using 
the nonlinear vehicle model (Bicycle Model). In this model, 
the two front wheels are represented as single front wheel and 
similarly, the two rear wheels of the vehicle are represented 
as a single rear wheel. As our test vehicle is only steerable from 
the front wheels, the test vehicle is modeled to be only steerable 
from the front wheel [5]. Forces acting on the vehicle in this 
model are shown in Figure 1. Lateral forces generated by the 
front/rear wheels, vehicle center of gravity, distance of the 
center of gravity from the wheels and the preview distance 
are represented in the figure as Ff / Fr, CG, lf / lr, ls respectively.

The lateral direction steering controller for the automated 
lane-keeping application is designed using a linearized version 
of the nonlinear vehicle model. Linearized state space model 
of the lateral motion of the vehicle is given in Equation 1 where 
β is the vehicle side slip angle at the vehicle center of gravity, 
r is vehicle yaw rate, V is velocity, Δψ is yaw angle of the vehicle 
with respect to desired path’s tangent, ρref is the road curva-
ture, δf is the steering wheel angle and μ is the friction coef-
ficient of the road. The entries a11, a12, a21, a22, b11, b12 used in 
Equation 1 are given in Equations 2-7, where cr, cf are the 
cornering stiffness of the rear and front wheels, �J J= / m is 
the virtual mass moment of inertia and the �m m= / m  is the 
virtual mass.
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Lane Detection
Lane lines on the road can be used to localize the ego vehicle 
on the road Cartesian coordinates. Our research automated 
driving vehicle that we plan to use in the future for experi-
mental evaluation has a Mobileye camera which can provide 
the coefficients of the polynomial fit for the lane detections, 
lane detection availability and quality information and a 
GreyPoint camera with our own algorithms for the same 
outputs. In this paper, we are using our connected and auto-
mated driving HIL simulator which has CarSim Real Time 
with Sensors and Traffic. The CarSim soft camera sensor in 
the HIL simulator provides the lane detection in the form of 
x, y coordinates (Figure 2). To simulate the real sensor output 
and extrapolate the lane detection points, two second order 
curves denoted by yl(x) and yr(x) are fitted to the left and right 
lane detection points respectively, coming from the CarSim 
software (Equations 8 and 9).

 y x a a x a xl l l l( ) = + * + *0 1 2
2 (8)

 y x a a x a xr r r r( ) = + * + *0 1 2
2 (9)

By inserting a longitudinal distance x into the 
Equations 8 and 9, one can calculate the lateral distance of 
the vehicle from the right and left lane lines at that 
longitudinal distance.

 FIGURE 1  Lateral vehicle model for lane 
keeping application
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 FIGURE 2  CarSim soft camera sensor visualization.
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Path Generation
For generating the lane level path following map/path, the 
method presented in [5, 6] is used. This method requires to 
drive the car at a constant speed at the center of the road and 
collect accurate GPS data points. These GPS waypoints can 
also be automatically extracted from a realistic map. We use 
both approaches. Our future work will be based on an 
e-Horizon system once we add this capability to our research 
automated driving vehicle. Collected GPS waypoints are 
divided into a predetermined number of polynomial segments 
to capture the different characteristics of the road. These 
segments are represented as 3rd order parametric polynomials 
of a distance parameter λ, where λ changes between i-1 to i, 
according to the number of the segment used. These polyno-
mials are given below as:

 X a b c di xi xi xi xil l l l( ) = + + +3 2  (10)

 Y a b c di yi yi yi yil l l l( ) = + + +3 2  (11)

where Xi and Yi are the path centerline coordinates for 
the ith segment. Since the polynomials fitted to two consecu-
tive segments need to have continuity at their intersection, 
the polynomials can be fitted to the GPS waypoints using the 
constrained least squares method. However, to solve the 
constrained least squares problem, first, the unconstrained 
problem needs to be solved. The unconstrained problem can 
be formed in matrix form as shown below.

 x ndata x uncs= L ,
 (12)

 y ndata y uncs= L ,
 (13)

 L = ¼

é

ë

ê
ê
ê

ù

û

ú
ú
ú

l l l
l l l

3 2

3 20 0 0
1 0 0
0

0 0
1

� � � � � �

�

� � �

 (14)

n a b c d a b c dx uncs x x x x xm xm xm xm

T

, = ¼éë ùû1 1 1 1
 (15)

n a b c d a b c dy uncs y y y y ym ym ym ym

T

, = ¼éë ùû1 1 1 1
 (16)

In the Λ matrix, l  represents the entire λ vector which 
ranges from i-1 to i, where i is the number of the segment. The 
number of elements in l  is equal to the number of the data 
points in the ith segment. For the given equations, the solution 
of the unconstrained least square problem is given in 
Equations 17 and 18 as

 n xx uncs
T T

data, = ( )-L L L
1  (17)

 n yy uncs
T T

data, = ( )-L L L
1  (18)

To sustain the continuity and smoothness (continuity of 
the first derivative) at the segment boundaries, the constraints 
given below are defined.

 X i X ii i( ) = ( )+1
 (19)

 Y i Y ii i( ) = ( )+1
 (20)

 
dX i

d
dX i

d
i i( )

=
( )+

l l
1  (21)

 
dY i

d
dY i

d
i i( )

=
( )+

l l
1  (22)

 d X i
d

d X
d

i i
2 2

1( )
=

( )+

l l
i  (23)

 
d Y i

d
d Y i

d
i i

2 2
1( )

=
( )+

l l
 (24)

From the equations 10 and 11, these constraints can be 
rewritten as shown in Equations 25-30.

 a i b i c i d a i b i c i dxi xi xi xi xi xi xi xi
3 2

1
3

1
2

1 1+ + + = + + ++ + + +
 (25)

 a i b i c i d a i b i c i dyi yi yi yi yi yi yi yi
3 2

1
3

1
2

1 1+ + + = + + ++ + + +
 (26)

 3 2 3 22
1

2
1 1a i b i c a i b i cxi xi xi xi xi xi+ + = + ++ + +

 (27)

 3 2 3 22
1

2
1 1a i b i c a i b i cyi yi yi yi yi yi+ + = + ++ + +

 (28)

 6 2 6 21 1a i b a i bxi xi xi xi+ = ++ +
 (29)

 6 2 6 21 1a i b a i byi yi yi yi+ = ++ +
 (30)

These defined constraint equations are used in matrix 
form to convert the unconstrained problem into the 
constrained problem. These equations are combined into a 
matrix form as shown in Equations 31 and 32.

 Fnx cs, = 0 (31)

 Fny cs, = 0 (32)

Finally, the solution of the constrained problem is given 
in Equations 33 and 34.

 n n F F F Fx cs x uncs
T T T T

n xuncs, , ,= - Ù Ù( ) Ù Ù( )é
ëê

ù
ûú

- - -1 1 1
 (33)

 n n F F F Fy cs y uncs
T T T T

n yuncs, , ,= - Ù Ù( ) Ù Ù( )é
ëê

ù
ûú

- - -1 1 1
 (34)

Lateral Deviation 
Calculation
The lateral controller takes the lateral deviation at a pre-
defined preview distance as input and calculates the corre-
sponding steering angle. As mentioned earlier, two different 
methods are used to calculate the lateral deviation in this 
application. The first method uses lane detections acquired 
from the camera and the second method uses the GPS local-
ization and map based waypoint information.
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Lateral Deviation from the 
Lane Line Detections:
The polynomials representing the lane lines must be parallel 
to one another as the lane lines are parallel to each other in a 
real road. Knowing this, the centerline of the road can be 
represented with the polynomial below in vehicle coordinates.

 y x a a x a xc c c c( ) = + * + *0 1 2
2 (35)

where coefficients of the polynomial which represents the 
centerline are given below. Here the superscript “c” indicates 
that the polynomial is a fit for the centerline of the road, and 
the coefficients of the polynomial are given in Equations 36-38.

 a a ac l r
0 0 0 2= +( ) /  (36)

 a a ac l r
1 1 1 2= +( ) /  (37)

 a a ac l r
2 2 2 2= +( ) /  (38)

Inserting the preview distance ls into Equation 35 gives 
the lateral distance of the vehicle at the preview distance.

Lateral Deviation Calculation 
from the Map and GPS 
Measurements:
When the lane detections are not available or reliable, the 
lateral deviation at the preview distance is calculated using 
the current lateral deviation and the yaw angle error with 
respect to the generated map. Based on the geometry shown 
in Figure 1 the lateral deviation at the preview distance ls can 
be calculated as

 y s= + ( )h l sin DY  (39)

where h is the lateral deviation from the desired path at 
the vehicle center of gravity, ls is the preview distance and the 
∆ψ is the yaw angle of the vehicle with respect to the 
desired path.

First, the lateral deviation of the vehicle from the gener-
ated map is calculated. Assuming the radius of the curvature 
is much larger than the lateral deviation of the vehicle, the 
shortest distance to the path can be calculated by finding the 
perpendicular vector to the path from the vehicle center of 
gravity. This means that the tangent vector of the path will be 
orthogonal to the shortest vector between the generated path 
and the vehicle center of gravity as shown in Figure 3. Here 
the center of the gravity of the vehicle is represented using 

east and north map coordinates PE and PN respectively. Using 
the fact that dot product of two orthogonal vectors is zero, the 
solution of Equation 40 for λc gives the closest segment 
position to the vehicle. One can evaluate the x, y coordinates 
of the closest point on the path and the distance of the vehicle 
from the path by inserting λc into the Equation 41.

 X P Y P X YE Nl l l l( ) - ( ) -( ) ( ) ( )( ) =, ,� � 0 (40)

 h X P Y Pc E c N= ( ) -( ) + ( ) -( )r l l
2 2  (41)

where

 r = ( )( )sgn
�

U 3  (42)

 � � �U X P Y P X Yc E c N= ( ) -( ) ( ) -( )( ) ( ) ( )( )l l l l, , x , ,0 0  (43)

If the third component of the cross product of the path 
tangent and distance vector is negative, it shows that the vehicle 
is in the inner side of the desired path and vice-versa.

After finding the h, ∆ψ is calculated by subtracting the 
slope of the road at the closest point on the reference path 
from the yaw angle of the vehicle. Calculation of ∆ψ can be 
seen in Equation 44.

 D = -
( )
( )

Y Y
�

�
Y
X

c

c

l
l

 (44)

Finally, the lateral deviation at the preview distance can 
be calculated by inserting h, ls and ∆ψ into equation 39.

Lateral Controller Design
The parameter space based design approach given in [7] is 
used to design the PD controller for the robust lane-keeping 
controller for the overall system shown in Figure 4. The input 
and outputs of the system can be listed as the steering 
command and the lateral deviation at the preview distance 
respectively. The test vehicle modeled in the state space model 
of Equation 1 has the numerical parameter values 
J = 3,728 kgm2, Cf = 1.2e5 N/rad, Cr = 1.9e5 N/rad, lr = 1.5453 m 
and lf = 1.30 m where the weight of the vehicle varies between 
1,700 kg and 2,000 kg.

 FIGURE 3  Position and orientation of the vehicle with 
respect to the desired path.
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 FIGURE 4  Lateral controller system block diagram.
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Since the vehicle operates in different load and speed 
conditions, the controller is designed to be able to work under 
these different operating conditions as is shown in Figure 5 
as an uncertainty box. Also, the preview distance for higher 
speeds is increased as ls = max(ksv,lsmax) where v is vehicle 
speed, ks is a proportional factor and lsmax is the upper bound 
on the preview length. In this paper, ks is adjusted such that 
preview distance changes linearly between 4 m to 7 m for the 
chosen operating speed range 5 m/s to 30 m/s.

As a D-stability requirement, desired settling time, 
damping ratio and maximum bandwidth are chosen as 
0.5 seconds, 0.7 and 19 rad/sec respectively. PD controller 
coefficients (Kp and Kd) are chosen as free parameters to find 
a solution region using the parameter space approach. 
D-stability solution region is constructed for each corner of 
the uncertainty box in Figure 5 and they are overlaid on top 
of each other to find the overall solution region as shown in 
Figure 6. In this figure blue, green, red, cyan, magenta 
colored lines show Settling Time Constraint Complex Root 
Boundary (CRB), Damping Constraint CRB, Bandwidth 
Constraint CRB, Bandwidth Constraint Real Root Boundary 
(RRB), Settling Time Constraint RRB respectively. Since 
blue line is covered by the magenta, it is not clearly visible. 
Calculation of these boundaries are shown in detail in [7]. 
By choosing a point in this solution region, one set of Kp and 
Kd values for the PD controller are chosen as shown in the 
right plot in Figure 6.

To be considered as a D-stable system, the poles of the 
system should lie within the D Stable region where it is defined 
by the desired settling time, the desired minimum damping 
ratio and the desired maximum bandwidth, all given earlier. 
As it can be seen from Figure 7, all of the dominant poles of 
the system which are marked as “x” lie in the D-Stable region 
for the chosen Kp and Kd coefficients of the PD controller.

Hardware in the Loop 
Simulator
Testing the developed algorithms in the Hardware in the Loop 
simulator is a prerequisite to road testing. While testing the 
vehicles on the road may take extensive time and money, by 
using simulators, these adverse effects can be minimized with 
the ease of repeating the simulations in an accident-free envi-
ronment. Running in real time and being able to connect to 
the hardware used in the vehicle makes the Hardware in the 
Loop simulator more advantageous over the regular Model 
in the Loop simulators. The setup of the HIL simulator used 
in this paper can be seen in the Figure 8. The setup consists 
of three main components. The following paragraph will give 
brief information about these components.

The first component in the system is the computer with 
CarSim software. This computer is used to design controller 
algorithms in Matlab and prepare the model of the test vehicle, 
sensors, and roads. This computer is also used as an interface 
to communicate with the real-time simulation computer and 
the controller during the simulation. Secondly, the dSPACE 
SCALEXIO Processing Unit, which is the real-time computa-
tion unit in the HIL, is used to run the validated vehicle model, 
sensors and traffic information based on the information 

 FIGURE 5  Lateral dynamics uncertainty box.
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 FIGURE 6  Left: Solution regions for the corners of the 
uncertainty box is plotted on top each other. Right: The 
zoomed version of the left figure where intersection of the 
solution regions is highlighted with a gray fill and chosen 
solution point is shown with a red dot.

©
 S

A
E 

In
te

rn
at

io
na

l

 FIGURE 7  D-Stable region and the system pole positions in 
complex plane for the chosen Kp and Kd. Top Left: 5 m/s, 
1700 kg ls = 4 m, Top Right: 5 m/s, 2000 kg ls = 4 m, Bottom 
Left: 30 m/s, 1700 kg ls = 7 m, Bottom Right: 30 m/s, 
2000 kg ls = 7 m.
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coming from its input ports. Finally, a MicroAutoBox 
controller unit is connected to HIL, as the control task of the 
test vehicle is handled by MicroAutoBox. Like the test vehicle 
setup, in this system computer is connected to MicroAutoBox 
and the SCALEXIO via ethernet port and the communication 
between the MicroAutoBox and the SCALEXIO is handled 
by the CAN Bus. While not used in this paper, we also have 
DSRC radio units connected as hardware in our HIL simu-
lator. In the next section, simulation results of the lane keeping 
system are given.

Simulation Results
To evaluate the performance of the system a designed lane 
keeping controller is tested in the CarSim environment 
described in the previous section. As a test track, a simple 
model of the high-speed test track in the Transportation 
Research Center proving ground is constructed in CarSim 
using its pre-recorded GPS waypoints. The top view of the 
TRC testing track can be seen in the Google Maps image in 
Figure 9 which has two curved section between 1000 m-4200 m 
and 7200 m-10100 m. Since the GPS based path following 
localization is used as a backup solution, camera based lane 
keeping system is considered as the active system. In the 
experimental setup, vehicle is equipped with a Mobileye 
camera where it can output the quality of the lane line detec-
tions. So, in the experiments the mode switching between the 
camera and GPS will be done based on this lane line detection 
quality information by the Lateral Calculation Module show 
in in Figure 4. If the there is no reliable lane detections, vehicle 
is going to switch to GPS based path following mode. Based 
on the road conditions lane quality of the system can fail 
anytime. To simulate the cases where the camera detection 
fails, the system switches to the GPS based lane keeping mode 
for pre-defined distance intervals (1500-1700, 5800-6000, and 
9800-10000 meters). In the first and third sections vehicle is 
travelling in the curved parts of the test track while it travels 
at the straight part of the road in the second interval.

The designed system is tested for the different speed and 
vehicle mass conditions which are defined as the corners of 
the uncertainty box given in Figure 5.

The simulation results for the designed system are shown 
in Figure 10.

When the lateral deviation graph (Figure 10) is analyzed, 
it can be seen that the designed system still keeps the vehicle 
in the lane even when the lane detection status goes to zero. 
Although both the vision based and the GPS based solutions 
have a higher error for the curved sections of the road, which 
increases for high speeds, this error is less than 12 cm.

Summary/Conclusions
This paper presented the use of a GPS based lane keeping/path 
following application as a backup to the camera based lane 
keeping application. By using these two methods, lane level 

 FIGURE 8  Hardware in the Loop Simulator setup.

©
 S

A
E 

In
te

rn
at

io
na

l

 FIGURE 9  Top view of the TRC test tracks from 
Google Maps.
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 FIGURE 10  Simulation Results for the designed lane 
keeping system. Top: lateral deviation vs distance traveled for 
different operating conditions. Bottom: Availability of lane 
detection vs distance traveled.
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control for the vehicle is sustained even when one of the sensor 
inputs is not available or is not reliable. This happens for 
instance when lane markings are missing or are very vague 
or not observable due to weather conditions in certain parts 
of the road. As it can be seen from the simulation results in 
Figure 10 both of the designed systems keep the vehicle in the 
lane accurately. Although increasing the operating speed 
increases the lateral deviation, especially for the curved parts 
still the deviation is under 12 cm for the highest vehicle speed 
of 30 m/s. Also, the system works in different operating condi-
tions where the vehicle weight and the speed are varied over 
the uncertainty box. As a future work, this simulator will be 
improved for level 3 to 4 autonomous driving scenario simula-
tions and presented work will be tested in the TRC test track 
shown in Figure 9.
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Abstract

Autonomous vehicle technology has been developing 
rapidly in recent years. Vehicle parametric uncer-
tainty in the vehicle model, variable time delays in 

the CAN bus based sensor and actuator command interfaces, 
changes in vehicle sped, sensitivity to external disturbances 
like side wind and changes in road friction coefficient are 
factors that affect autonomous driving systems like they have 
affected ADAS and active safety systems in the past. This paper 
presents a robust control architecture for automated driving 
systems for handling the abovementioned problems. A path 
tracking control system is chosen as the proof-of-concept 
demonstration application in this paper. A disturbance 
observer (DOB) is embedded within the steering to path error 
automated driving loop to handle uncertain parameters such 
as vehicle mass, vehicle velocities and road friction coefficient 
and to reject yaw moment disturbances. The compensation of 
vehicle model with the embedded disturbance observer forces 
it to behave like its nominal model within the bandwidth of 
the disturbance observer. A parameter space approach based 
steering controller is then used to optimize performance. The 

proposed method demonstrates good disturbance rejection 
and achieves stability robustness. The variable time delay from 
the “steer-by-wire” system in an actual vehicle can also lead 
to stability issues since it adds large negative phase angle to 
the plant frequency response and tends to destabilize it. A 
communication disturbance observer (CDOB) based time 
delay compensation approach that does not require exact 
knowledge of this time delay is embedded into the steering 
actuation loop to handle this problem. Stability analysis of 
both DOB and CDOB compensation system are presented in 
this paper. Extensive model-in-the-loop simulations were 
performed to test the designed disturbance observer and 
CDOB systems and show reduced path following errors in the 
presence of uncertainty, disturbances and time delay. A vali-
dated model of our 2017 Ford Fusion Hybrid research autono-
mous vehicle is used in the simulation analyses. Simulation 
results verify the performance enhancement of the vehicle 
path following control with proposed DOB and CDOB struc-
ture. A HiL simulator that uses a validated CarSim model 
with sensors and traffic will be used later to verify the real 
time capability of our approach.

I.  Introduction

With the rapid development of autonomous vehicles, 
automatic steering technique plays an important 
role in autonomous research area. Many different 

steering control methods have been proposed in the literature. 
A path following algorithm named Circular Look Ahead 
(CLA) steering control was proposed in [1] which can control 
a car to precisely follow a path even on a curvy road. The 
waypoint tracking method of autonomous navigation is 
presented in [2] using the Point to Point algorithm with 
position and heading measurements from GPS receivers. 
Model predictive control based vehicle front wheel steering is 
applied to track the collision free path in [3] and has the capa-
bility to deal with a wide variety of process control constraints 
systematically. However, regular controllers are usually 
designed without considering external disturbances and 
model uncertainty in mind, which may lead to performance 

degradation in path tracking. To solve such problem, a distur-
bance observer (DOB) is added into the control system to 
achieve insensitivity to modeling error and disturbance rejec-
tion. The disturbance observer was firstly proposed by Ohnishi 
[4] and further developed by Umeno and Hori [5]. Later, DOB 
has been applied in mechatronic applications in the literature. 
In [6], robustness of disturbance observer is added to the 
model of electrohydraulic system considering the case in 
which the plant has large parametric variation. A new active 
front steering controller design for electric vehicle stability 
using disturbance observer was proposed in [7].

Time delay is another significant issue which generally 
exists in the network-based control system. With the occur-
rence of time delay, large negative phase angles are added to 
the frequency response of vehicle plant which may lead to 
instability of the system. The Smith predictor has been widely 
used for a long time and extended for different cases such as 
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[8, 9]. Smith predictor has the advantage of easy implementa-
tion and simplicity in understanding. However, time delay 
model and model accuracy in the knowledge of time delay are 
required to ensure no degradation of compensation perfor-
mance. Communication disturbance observer was proposed 
as another time delay compensation approach. This method 
was firstly applied in the bilateral teleoperation systems [10] 
and has been extended to robust time delayed control system 
in [11, 12]. The communication disturbance observer can be 
implemented to a wider range of applications since the 
accuracy of time delay is not necessary and also can be used 
for plants with variable time delay.

Motivated by the limitations of single DOB and CDOB 
compensated system. [13] proposed a double disturbance 
observer (DDOB) structure in the wireless motion control 
system design, which embedded both DOB and CDOB in one 
control system. The proposed approach effectively realized 
time delay compensation and external disturbance 
rejection simultaneously.

Although DOB and CDOB have been applied to many 
different applications in the literature, there are few DOB and 
CDOB applications in autonomous vehicle system which will 
be a potential area of progress. Furthermore, DOB, CDOB 
and DDOB compensated structure investigated in this paper 
was applied in the autonomous vehicle path following control 
system separately as a new topic in the field of automated 
vehicle. Uncertain parameters including vehicle mass, vehicle 
velocities and road friction coefficient and disturbances like 
road curvatures are firstly focused on. A disturbance observer 
(DOB) is embedded within the steering to path error auto-
mated driving loop to reject disturbances and handle model 
uncertainty. Then, time delay was taken into account and 
CDOB was embedded into the steering actuation loop to 
handle the problem. Robustness of stability of both structures 
is analyzed and validated. In order to deal with time delay and 
external disturbances simultaneously, DDOB compensated 
structure was used. Simulation results show that DDOB works 
better than DOB or CDOB compensated systems and all three 
compensated systems demonstrate good path following 
performance compared with PD feedback control system.

The rest of this paper is organized as follows. The vehicle 
steering model and vehicle parameters are presented in 
Section II. Disturbance observer and communication distur-
bance observer and are introduced in Section III and Section 
IV respectively. In Section V, robust PD controller and Q filter 
are designed. Also, robust stability analysis of both DOB and 
CDOB design are demonstrated. Section VI proposed double 
disturbance observer and Section VII shows autonomous 
vehicle path following simulation results using DOB compen-
sation system, CDOB compensation system and results 
comparison between DDOB and CDOB. The paper ends with 
conclusion and recommendations for future work in 
Section VII.

II.  Vehicle Model
By combining the two front wheels together and two rear 
wheels together of a four wheel car, a single track vehicle model 
is formed as shown in Figure 1 to model the steering dynamics. 

The parameters of the vehicle model are given in Table 1. 
The state space model can be described as:
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The standard form of vehicle steering dynamics can be 
written as (3) according to (1):

 �x = +Ax Bu  (3)

 FIGURE 1  Diagram of the vehicle model
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TABLE 1 Parameters of the vehicle model

β vehicle side slip angle [rad]

subscript f front tires

V vehicle velocity [m/s]

δf front wheel steering angle [rad]

J yaw moment of inertia [3728 kgm2]

𝐶𝑟 rear cornering stiffness [50,000 N/rad]

lf distance from CG to front axle [1.3008 m]

lr distance from CG to rear axle [1.5453 m]

ρref = 1/R curvature of path [1/m]

r vehicle yaw rate [rad/s]

subscript r rear tires

Δψ yaw orientation error with respect to path [rad]

y lateral deviation [m]

𝐶𝑓 front cornering stiffness [195,000 N/rad]
𝑚 vehicle mass [2,000 kg] ©
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The transfer function from front wheel steering angle 
δf to the lateral deviation y is represented by equation (4). Note 
that front wheel steered vehicle is considered in this paper so 
that δr = 0.

 y
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The curvature ρref of the desired path is taken as an 
external disturbance. The transfer function from the road 
curvature ρref to the lateral deviation from the desired path 
can be represented as:
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The vehicle velocity V, vehicle virtual mass m and road 
friction coefficient μ are regarded as uncertainty parameters 
with nominal parameter values of Vn = 5km/h, μn = 1 and 
mn  =  2,000  kg. The operating ranges used were 
V∈[4, 7]km/h , μ ∈ [0.4,1] and mass m ∈ [1600, 2000] kg from 

no load to full load. The virtual mass �m  = m

m
 is then within 

the range of �m m= Î[ ]
m

1600 5000,  kg. The uncertainty param-

eters are illustrated in the uncertainty box shown in Figure 2. 
Four vertices labeled by a, b, c, d in the uncertainty box are 
used to evaluate the performance and robustness of the distur-
bance observer compensated system.

III.  Disturbance Observer
The block diagram of the closed-loop control system with 
disturbance observer compensation is depicted in Figure 3. 
In the block diagram, robust PD feedback controller is used 
as a baseline controller which is designed based on the nominal 
model of the vehicle. Q is the low pass filter to be selected and 
its bandwidth determines the bandwidth of model regulation 
and disturbance rejection. System plant G is formulated by 

taking both model uncertainty Δm and external disturbance 
d into account. The vehicle input - output relation becomes

 y Gu d m u d= + = +( )( ) +Gn 1 D  (6)

where Gn is the desired model of plant and G represents 
the actual plant. The goal in disturbance observer design is 
to obtain

 y u=Gn new  (7)

as the input-output relation in the presence of model 
uncertainty Δm and external disturbance d. unew is regarded 
as a new steering input which is derived as follows. By consid-
ering model uncertainty and external disturbance as an 
extended disturbance e, equation (6) can be rewritten as (8)

 y m u d= +( )( ) + = +G G u en n1 D  (8)

Combining equation (7) with equation (8), the new 
control input unew is represented as

 unew
n

u
e

G
= +  (9)

and

 u u u= - = - +new
n

new
n

e

G

y

G
u  (10)

In order to limit the compensation to a low frequency 
range to avoid stability robustness problem at high frequency, 
the feedback signals in (10) are multiplied by the low pass filter 
Q and implementation equation becomes

 u u= - +new
n

Q

G
y Qu  (11)

Based on the block diagram, the model regulation and 
disturbance rejection transfer function can be derived as equa-
tions (12) (13). It can be seen that Q should be a unity gain low 

pass filter to make sure as Q→1, y

u
G

new
n®  for model regula-

tion and y

d
® 0  to achieve disturbance rejection.

 FIGURE. 2  Parametric Uncertainty Box
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 FIGURE 3  Disturbance observer compensated 
control system
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+ -( )
1

1
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IV.  Communication 
Disturbance Observer

Although disturbance observer shows good performance in 
model regulation and disturbance rejection, performance will 
degrade when there exists time delay in the system. 
Communication disturbance observer is applied to compen-
sate the time delay. For CDOB design, time delay is considered 
as a disturbance d that is acting on the system as illustrated 
in Figure 4 and the aim is to obtain disturbance estimation d�  . From Figure 4, we can get equation (14) and it can be rewritten 
as (15). Then, the estimated disturbance d̂  is obtained by 
multiplying d with Q to ensure causality as shown in 
equation (16).

 y = -( )G u dn  (14)

 d u= - -G yn
1  (15)

 d̂ G yn= -( )-Q u 1  (16)

According to network disturbance concept as depicted 
in Figure 5, d̂  can be also expressed as equation (17)

 d̂ u ue T= - -  (17)

where u is system input and T is time delay.
In this way, the estimated disturbance d̂ is used to 

compensate the time delay effect in the feedback signal. 
Figure 6 shows the structure of the communication distur-
bance observer compensated control system. There is a 0.08 sec 
time delay between actual steering wheel input and desired 
steering wheel input, which is compensated by the proposed 
CDOB. It is seen that there are two blocks in the structure: 
the left block is time delay compensation and the right block 
is network disturbance estimation.

Therefore, the closed loop transfer function of the system 
is written as (18):

 y

r

CG s e

CG Q CG Q e
n

Ts

n n
T

=
( )

+ + -( )
-

-1 1
 (18)

The Q filter is usually chosen as a low pass filter due to 
the fact that reference operates in low frequency. From 
equation (18), we can see that it is ideal to make Q = 1 in low 
frequency so that the denominator of the transfer function 
will have no time delay elements.

VI.  Design Analysis

A.  Robust PD Controller 
Design

In the proposed robust control system, a parameter space 
approach based PD controller is designed. The details of 
parameter space method can be found in [14, 15, 16]. Robust 
PD controller is designed based on the nominal plant Gn. 
Using the parameter space method, D-stability boundaries 
are depicted in Figure 7, where settling time constraint σ is 
set to be 0.3, damping constraint θ  is 135° and bandwidth 
constraint R is assigned as 1.3 rad/sec. The overall solution 

 FIGURE 4  Classic disturbance observer
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 FIGURE 5  Concept of network disturbance
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 FIGURE 6  Communication disturbance observer 
compensated control system
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region which satisfies the stability requirements are calcu-
lated  and plotted as illustrated in Figure 8. In Figure 8, 
Kp  and  Kd are two free design parameters and we select 
Kp=1.0596, Kd=0.939.

B.  Q Filter Design and 
Verification of Robust 
Stability

Q filter is designed to be a low pass filter as discussed before 
for model regulation, disturbance rejection and time delay 
compensation. For appropriate orders of the Q filter, since the 
relative degree of low pass filter Q is chosen to be at least equal 
to the relative degree of Gn for causality of Q/Gn. The vehicle 
path following transfer function model Gn obtained from 
equation (4) is calculated as equation (19). Therefore, a second 
order filter Q is designed as defined in equation (20). For the 
cutoff frequency of Q filter, it should be appropriately selected 
in order to make ascertain the stability robustness of 
the system.

 Gn s( ) = + * + *
+ +

227 6 8 479 10 3 627 10

459 2 3 329 04

2 4 4

4 3 2

. . .

. .

s s

s s e s
 (19)

 Q s( ) =
+( )
1

1
2t s

 (20)

where τ=1/ωc.

B.1. DOB Compensation System Robust Stability 
Analysis We have obtained that Q must go to unity for 
model regulation and disturbance rejection. According to the 
characteristic equation (21), equation (22) is derived 
since Q → 1, Gn(1 − Q) → 0.

 G Q G Qn n m1 1 0-( ) + +( ) =D  (21)

 G Qn m1 0+( ) =D  (22)

Based on the small gain theory [17], the sufficient condi-
tion for robust stability can be written as equation (23). 
Combining variations covering all vertices from uncertainty 
box in Figure 2, real parametric variation of vehicle mass m, 
vehicle velocity V and road friction coefficient μ are converted 
to an approximate unstructured multiplicative uncertainty ∆m. 
Figure 9 illustrates the satisfaction of disturbance observer 
design requirement when the cutoff frequency ωc  of Q is 
5 rad/s.

 Q
m

< "1

D
, w  (23)

The frequency responses of four corners of the uncer-
tainty box are also studied to illustrate the robustness of DOB 
compensated system. PD feedback controller was applied to 
both systems with and without DOB compensation, the input-
output behavior |y/r| are shown below. It can be seen that at 
low frequency there are larger variations in figure 10 as the 
operating point is varied than in second figure. In figure 11, 
the frequency response magnitudes are close to each other at 
low frequency.

B.2. CDOB Compensation System Robust 
Stability Analysis According to the Nyquist stability 
criterion, robust stability of uncertain system can be 

 FIGURE 7  D-stability boundary
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 FIGURE 8  D-stability solution region
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 FIGURE 9  Magnitude of Q and 
m

1
D  for stability 

of robustness
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guaranteed if L does not encircle point (−1, 0), which can be 
expressed as equation (24):

 Dm n nj L j L jw w w w( ) ( ) < + ( ) "1 ,  (24)

or equivalently,

 
D

D
m n

n

n

n m

j L j

L j

L j

L j j

w w
w

w
w
w w

w( ) ( )
+ ( )

< " «
( )

+ ( )
<

( )
"

1
1

1

1
, ,  (25)

where Ln is represented as in equation (26) in this system, 
which is the nominal loop transfer function.

 L
C Q G e

CG Q
n

n
Ts

n

=
-( )
+

-1

1
 (26)

Consider time delay e−Ts  as the source of unmodeled 
dynamics, the model uncertainty ∆m is then given by 
equation (27):

 Dm
Tss e( ) = -- 1  (27)

Figure 12 illustrates that with the choice of ωc = 200rad/s, 
the system is stable as blue line is below the red one with 
no intersection.

VII.  Double Disturbance 
Observer

In order to deal with disturbance rejection and time delay 
simultaneously, DDOB compensated control system was used 
and its structure was depicted in figure 13. The lower block 
has the same structure as the CDOB and the upper block is a 
disturbance observer for disturbance rejection.

VIII.  Simulation Studies
Simulations are performed to check the performance enhance-
ment in the autonomous vehicle path following control with 
proposed DOB and CDOB structure. The desired path to be 
followed is an elliptical route as shown in Figure 14 and the 
curvature of the path is depicted in Figure 15. Figures 16 to 
20 compares the path following errors of robust PD feedback 
control ler system with and without disturbance 
observer compensation. For uncertain parameters, Figure 16 
to Figure 19 takes the four corners of parametric uncertainty 
box into account. In Figure 20, external disturbance is added 
into the system due to road curvature input ρref. It can be seen 
that with DOB added into the control system, the path 
following error decreases obviously as shown in Figure 16-20, 
which verify that DOB effectively deals with model regulation 
and d isturbance rejec t ion. Comparison about 

 FIGURE 10  |y/r| for the four vertices of uncertainty box 
without disturbance observer
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 FIGURE 11  |y/r| for the four vertices of uncertainty box with 
disturbance observer
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 FIGURE 12  Magnitude of 
( )
( )

n

n

L

1 L

j

j

w
+ w  and 

m

1
D

 for stability 
of robustness
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 FIGURE 13  Double disturbance observer compensated 
control system
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root-mean-square (RMS) errors of feedback control with DOB 
and feedback control only tabulated in Table II also illustrates 
the smaller errors in the presence of disturbance observer.

Figure 21 compares the lateral deviation of system with 
and without communication disturbance observer 

compensation by considering 0.08 sec CAN bus delay for 
steering actuation. It shows that CDOB compensates the time 
delay effect in the closed loop system and has reduced errors. 
From Figure 22, we can see that CDOB compensated control 

 FIGURE 14  Desired path used in the simulation
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 FIGURE 15  Curvature of the desired path
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 FIGURE 16  Lateral deviation with and without DOB at 
corner a for model uncertainty
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 FIGURE 20  Lateral deviation with and without DOB for 
disturbance input
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 FIGURE 18  Lateral deviation with and without DOB at 
corner c for model uncertainty

©
 S

A
E 

In
te

rn
at

io
na

l

 FIGURE 19  Lateral deviation with and without DOB at 
corner d for model uncertainty
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TABLE II Comparison of RMS tracking errors between PD and 
PD with DOB

4 km/h 
1600 kg

4 km/h 
5000 kg

7 km/h 
1600 kg

7 km/h 
5000 kg

PD 0.0580 0.0581 0.0523 0.0526

PD + DOB 0.0320 0.0336 0.0359 0.0370©
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 FIGURE 17  Lateral deviation with and without DOB at 
corner b for model uncertainty
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system has smaller steering angle compared with PD only 
controlled system. These results show a better path following 
performance of CDOB compensation control system.

Figures 23 and 24 compare the lateral deviation and 
steering angle and speed of CDOB and DDOB compensated 
system when both 0.08 sec time delay and disturbance input 
exist in the system simultaneously. It can be seen that both 
systems have similar steering angle and DDOB works better 
than CDOB with reduced path following errors.

IX.  Conclusion and Future 
Work

In this paper, the disturbance observer was applied to deal 
with model uncertainty and external disturbance and commu-
nication disturbance observer was used to handle CAN bus 
delay in order to realize performance enhancement of autono-
mous vehicle path following control. Also, double disturbance 
observer was applied in the vehicle path following control 
system to achieve model regulation, disturbance rejection and 
time delay simultaneously. Robust PD controller was designed 
based on the nominal model and Q filter design was presented. 
Robust stability of DOB and CDOB was studied analytically 
and verified. Simulation results were given to evaluate the 
vehicle path following performance and verify the proposed 
control algorithm.

In the future work, varying time delay will be studied 
with CDOB compensated system. More model-in-the-loop 
and hardware-in-the-loop (HiL) simulations will be performed 
to further test the designed DOB, CDOB and DDOB systems.
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Abstract

Future SAE Level 4 and Level 5 autonomous vehicles will 
require novel applications of localization, perception, 
control and artificial intelligence technology in order 

to offer innovative and disruptive solutions to current mobility 
problems. This paper concentrates on low speed autonomous 
shuttles that are transitioning from being tested in limited 
traffic, dedicated routes to being deployed as SAE Level 4 auto-
mated driving vehicles in urban environments like college 
campuses and outdoor shopping centers within smart cities. 
The Ohio State University has designated a small segment in 
an underserved area of campus as an initial autonomous 
vehicle (AV) pilot test route for the deployment of low speed 
autonomous shuttles. This paper presents initial results of 
ongoing work on developing solutions to the localization and 
perception challenges of this planned pilot deployment. The 
paper treats autonomous driving with real time kinematics 
GPS (Global Positioning Systems) with an inertial measure-
ment unit (IMU), combined with simultaneous localization 
and mapping (SLAM) with three-dimensional light detection 

and ranging (LIDAR) sensor, which provides solutions to 
scenarios where GPS is not available or a lower cost and hence 
lower accuracy GPS is desirable. Our in-house automated low 
speed electric vehicle is used in experimental evaluation and 
verification. In addition, the experimental vehicle has vehicle 
to everything (V2X) communication capability and utilizes a 
dedicated short-range communication (DSRC) modem. It is 
able to communicate with instrumented traffic lights and with 
pedestrians and bicyclists with DSRC enabled smartphones. 
Before real-world experiments, our connected and automated 
driving hardware in the loop (HiL) simulator with real DSRC 
modems is used for extensive testing of the algorithms and 
the low level longitudinal and lateral controllers. Real-world 
experiments that are reported here have been conducted in a 
small test area close to the Ohio State University AV pilot test 
route. Model-in-the-loop simulation, HiL simulation and 
experimental testing are used for demonstrating the feasibility 
and robustness of this approach to developing and evaluating 
low speed autonomous shuttle localization and perception 
algorithms for control and decision making.

Introduction

For the sake of development of smart city, the Ohio State 
University has designated a small segment in an under-
served area of campus as an initial Autonomous 

Vehicle (AV) pilot test route for the deployment of SAE Level 
4 low speed autonomous shuttles. This paper presents prelimi-
nary work towards proof-of-concept low speed autonomous 
shuttle deployment in this AV pilot test route which extends 
from our research lab through a 0.7 mile public road with a 
traffic light intersection and low speed traffic to our main 
research center. Our approach is to develop and test elements 
of this autonomous system in the private parking lot right 
next to our lab and in a realistic virtual replica of the AV pilot 
test route created within our Hardware-in-the-Loop (HiL) 
simulator environment. As we have already reported our work 
on GPS waypoint following based path tracking in our earlier 
papers, this paper concentrates on LIDAR SLAM based local-
ization for path tracking, a simple decision making logic for 
automated driving and experimental and simulation results.

Simultaneous localization and mapping (SLAM) as first 
proposed by Leonard and Durrant-Whyte [1] is used to build 
up maps of surrounding environment with the aid of sensors 
such as light detection and ranging (LIDAR) sensor or camera, 
while also estimating the position of a robot simultaneously. 
A reliable and accurate solution of SLAM problems lay the 
foundation for an autonomous navigation and control platform 
[2, 3]. During the last decade, highly effective SLAM tech-
niques have been developed and state-of-the-art two dimen-
sional laser SLAM algorithms are now able to have satisfactory 
performance in terms of accuracy and computational speed 
(e.g. GMapping [4] and Hector SLAM [5]). In addition, 
researchers have successfully extended SLAM applicable 
scenarios from indoor environment to outdoor environment 
for autonomous vehicles [6, 7]. Probabilistic map distributions 
over environment properties followed by Bayesian inference 
[8] increased robustness to environment variations and 
dynamic obstacles, which enabled the vehicle to autonomously 
drive for hundreds of miles in dense traffic on narrow urban 
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roads. A fast implementation of incremental scan matching 
method based on occupancy grid map was introduced in [9] 
where data association was also applied to solve the multiple 
object tracking problem in a dynamic environment. Most of 
the previous work in the literature in SLAM methods has 
concentrated on the evaluation of localization performance 
whereas SLAM is used and evaluated as part of an automated 
path following system here.

In this paper both SLAM and GPS based localization are 
used for localization and path following. The SLAM system 
used is based on the Levenberg-Marquardt algorithm and 
results are compared with the Hector SLAM method. First, a 
reasonable convergence criteria was provided for the solution 
to the Levenberg-Marquardt algorithm in contrast to the fixed 
iteration step setting implemented in Hector SLAM, enabling 
more accurate and reliable pose estimation when combined 
with an integrated control system for smooth and comfortable 
path following performance. LIDAR is the only sensor that 
this SLAM algorithm depends on, posing an effective solu-
tions to scenarios where GPS is not available or a lower cost 
and hence lower accuracy GPS is desirable. Both HiL simula-
tions containing different traffic scenarios and relevant real 
world experiments were conducted. Results were demon-
strated and evaluated to prove the feasibility and robustness 
of this approach to for low speed autonomous shuttle localiza-
tion and perception algorithms for control and decision making.

The paper continues with an overview of the autonomous 
shuttle used in this study, the vehicle dynamics and path 
tracking error models. The LIDAR SLAM algorithm and 
experimental GPS and SLAM based path following results are 
presented next. This is followed by a description of the HiL 
simulator and how the AV test pilot route is replicated in the 
simulator including communication with the traffic light 
controller. After simulation results, the paper ends with 
conclusions and directions of ongoing work.

System Overview

Hardware and Platform
The vehicle used in the experiments for this study is a small, 
low speed, fully-electric two seater shuttle used for ride 
sharing applications (Dash EV). The architecture and 
hardware presented in this paper is general in nature and also 
implemented on other vehicles in our lab [10]. In order to 
achieve autonomous driving capability, steering, throttle and 
brake in this vehicle were converted to by-wire. This is done 
by adding actuators into the vehicle, since it was not built with 
them as some of the commercial sedan vehicles. For steering 
actuation, a smart motor was connected to the steering mech-
anism through gears. For brake actuation, a linear electric 
motor was fixed behind the brake pedal, that pushes or pulls 
according to the position command. For throttle, an electronic 
by-pass circuit was constructed and used to override the 
throttle signal that is sent to vehicle Electronic Control Unit 
(ECU) with the throttle command.

Sensors are added for localization and environmental 
perception after steering, throttle and brake functions are 

converted to drive-by-wire. These sensors are GPS, a LIDAR 
sensor, a Leddar sensor and a Point Grey camera used in 
this paper as a backup sensor. The Leddar sensor is a solid-
state LIDAR which we use to get information about the 
obstacles in front of the vehicle. These obstacles can be 
vehicles, pedestrians, bicyclists etc. It is mainly used for 
emergency purposes, when there is an obstacle very close to 
the vehicle which creates a need to stop. It can be also used 
in low speed car following applications such as Adaptive 
Cruise Control (ACC) since its range is 50 m. For localiza-
tion, GPS and LIDAR sensors were used. We use a differen-
tial GPS with Real-Time Kinematic (RTK) correction capa-
bility, which provides about 2-5 cm accuracy when RTK 
correction signals are used. Also with the differential 
antennas, it provides heading information even while the 
vehicle is stationary. LIDAR is used for both localization 
with SLAM and perception. It is a 16 channel Velodyne 
LIDAR PUCK (VLP-16) which is mounted on the top of the 
vehicle horizontally to guarantee a horizontal Field of View 
(FOV) of 360 degrees with vertical FOV of 30 degree from 
the surrounding environment. A 3D point cloud is generated 
at a frequency of 10 Hz. Theoretically, the LIDAR’s maximum 
detection range can reach up to 100 m depending on applica-
tion while in this work, detection range used for localization 
was set to 80 m to achieve satisfactory point cloud density 
and quality.

The element between the actuators and sensors is the 
dSPACE Microautobox (MABx) electronic control unit that 
is used for rapid prototyping of the low-level lateral and 
longitudinal direction controllers and basic decision-making 
algorithms created as a Simulink models. Simulink coder 
is used to convert the model into embedded code and the 
code is uploaded to the MABx device. The generated code 
can later be easily embedded in a series production level 
 electronic control unit at the end of the research and 
development phase.

Sensors send data to the Microautobox electronic control 
unit with a means of communication specific to the sensor, 
like CAN or User Datagram Protocol (UDP) for most of our 
sensors. This data is fed to controllers running within the 
device. Controllers are created in the Simulink and outputs 
of the controllers are connected to output blocks that corre-
spond to I/O ports of the Microautobox. These I/O ports are 
physically connected to actuators or drivers of actuators to 
provide reference signal and achieve autonomous driving. The 
experimental vehicle also has a Dedicated Short Range 
Communication (DSRC) modem to communicate with other 
vehicles, infrastructure and pedestrians with DSRC enabled 
smartphones. For V2X communication, all messages are sent 
using the standard messages of the Society of Automotive 
Engineers (SAE) J2735 DSRC Message Set and use the standard 
communication rate of 10  Hz. Devices and actuators are 
powered through a 12 V battery placed in the trunk of the 
vehicle. Some of the hardware discussed in this section is 
shown in Figure 1.

Vehicle Dynamics Model
The vehicle model and path following algorithm used are 
presented briefly in this and the following section. The lateral 
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dynamics and path tracking error model is illustrated in 
Figure 2 and given in state space form as
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where β is side slip angle, r is yaw rate, V is combination 
of lateral and longitudinal velocity of the vehicle body, ∆Ψ is 
yaw angle relative to the tangent of the desired path, ls is the 
preview distance and y is lateral deviation from desired path 
with respect to preview distance. The control input is the 
steering angle δf. ρref = 1/R is the road curvature where R is 
the road radius. Other terms in the state space model are
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where m is the vehicle mass, J is the moment of inertia, μ 
is the road friction coefficient, Cf and Cr are the cornering 
stiffnesses, lf is the distance from the Center of Gravity of the 
vehicle (CG) to the front axle and lr is the distance from the 
CG to the rear axle.

Path Tracking Model
The low level automated driving tasks are lateral and longitu-
dinal control. The path determination and path tracking error 
computation are described briefly in this section. The path 
tracking model consists of two parts, which are offline genera-
tion of the path and online calculation of the error according 
to the generated path. These parts are explained in 
following subsections.

A. Offline Path Generation The path following algo-
rithm employs a pre-determined path to be provided to the 
autonomous vehicle to follow [11]. This map is generated from 
GPS waypoints where these points can be pulled from an 
online map or can be collected through recording during a 
priori manual driving. These data points are then divided into 
smaller groups named segments with equal number of data 
points for ease of formulation. These segments are both used 
for curve fitting and velocity profiling through the route. After 
dividing the road into segments, a process of fitting a third 
order polynomial is performed as
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Where i represents the segment number and terms a, b, 
c, d are polynomial fit coefficients for the corresponding 
segment. Fitting the data points provides effective replication 
of the curvature that the road carries and also eliminates the 
noise in the GPS data points. To provide a smooth transition 
from one segment to another by satisfying continuity of the 
polynomials and their first derivatives in X and Y, we use
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The X and the Y points derived from the GPS latitude and 
longitude data using a degree to meter conversion, are fit using 
a single parameter λ, where λ is the variable for the fit which 
varies across each segment between 0 and 1, resulting in
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 FIGURE 1  Hardware on the vehicle.
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 FIGURE 2  Illustration of single track model.
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B. Error Calculation After the generation of path coef-
ficients, an error is calculated for the lateral controller to use 
as input. Heading and position of the vehicle is provided by 
means of localization, in this case either SLAM or GPS. Using 
these, the location of the car with respect to the path in other 
words the deviation from the path is calculated. This approach 
reduces both oscillations and steady state lateral deviation 
compared to calculation with respect to position only. In order 
to find an equivalent distance parameter to add to the first 
component distance error, a preview distance ls is defined. 
Then, the error becomes,

 y h ls= + sin( )Dy  (6)

Where ∆ψ is the net angular difference of heading of the 
vehicle from the heading tangent to the desired path and y is 
the total error of the vehicle computed at preview distance ls 
as is illustrated in Figure 3.

Finally, error is fed to a robust PID controller which 
controls the actuation of steering of the vehicle.

SLAM Algorithm
The SLAM based localization algorithm is presented in this 
section. In this study, ground plane is always assumed to be 
flat and hence only 2D mapping and localization are required 
while z direction pose information in Cartesian coordinate 
system is not necessarily considered. In the following algo-
rithm, the pose state vector (x, y, θ)T, comprised of 2D Cartesian 
coordinates and orientation angle, and thus three degrees of 
freedom (DOF), is used to represent the pose information for 
the low speed autonomous shuttle. As has been presented, the 
16 channel Velodyne LIDAR can provide 3D point cloud 
including 360 degree FoV information of the surrounding 
environment. However, in this context, considering the 
constraint of the processor in this configuration, additional 
computational complexity will negatively affect the whole 
system in terms of real time performance. Therefore, so as to 
obtain planar scan information, 3D point cloud is projected 
into 2D space.

Before the projection, ground noise as seen in Figure 4 
needs to be removed by building up occupancy height map 
(section A). Once the planar scan end points are obtained, 
scan matching process is used to align the current scan end 
points either to those in last frame or to the built up map in 

order to derive the pose transformation of the shuttle. A more 
reliable and accurate optimization framework inspired by 
Hector SLAM [5] is imposed for the scan matching process, 
where more reasonable stop criteria is also introduced 
(section B).

A. Ground Noise Removal and Projection Occupancy 
height map is built up for ground noise removal. The LIDAR 
position is selected as the origin and the Cartesian coordinate 
system is built with the x-y plane representing the ground 
plane and the z axis being vertical to it. As shown in Figure 5, 
from a top-down view, we divide the x-y plane into many 
square cells of equal size. In this work, cell size is set to 
0.2 m × 0.2 m. For each of the 3D points Pi = (xi,yi,zi)T, we can 
find a cell Cj that it belongs to. Subsequently, for each of the 
cells Cj by comparing the heights of the points to a threshold 
hthres (set to 0.3 m in this work), if

 z z hj j thresmax, min,- £  (7)

 FIGURE 3  Illustration of error calculation.
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 FIGURE 4  Raw 3D point cloud with ground noise.
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 FIGURE 5  Occupancy height map. Cj is one of the cells. 
Height of every cell is determined by the maximum height 
difference in that cell.
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then this cell is defined as not occupied or comprised of 
ground noise and thus left as empty. If

 z z hj j thresmax, min,- ³  (8)

then this cell is defined as occupied and all the 3D points 
included in it are remained for further projection.

In the projection step, polar coordinate system is used to 
represent the position of each scan end point in 2D plane. For 
each 3D point Pi, its angular position in x-y plane can be 
expressed as:

 ai i ia y x= tan ( , )2  (9)

where atan2 is four-quadrant inverse tangent and hence 
αi ∈ [−π, π]. The range of the 2D scan corresponding to the 
3D point Pi can be expressed as:

 range x yi i i= -2 2  (10)

Note that there can be more than one projected 2D scan 
point in the same direction with different ranges. The ultimate 
range of 2D scan end point is the smallest range in that direc-
tion. Therefore, every projected 2D scan beams with their 
associated scan end points can be identified by angular posi-
tions, as shown in Figure 6.

B. Map Generation and Scan Matching In this work, 
the same map access methodology as [5] is employed, which 
can provide an effective solution to the accuracy limitation 
caused by discrete property of occupancy grid maps.

Due to the high accuracy and frequency of modern 
LIDAR, iterative optimization algorithms are now possible to 
minimize the error between obtained scan end points and built 
up maps, delivering the optimal alignment in the scan matching 
step. In this work, instead of Gauss-Newton optimization 
performed in Hector SLAM [5], the Levenberg-Marquardt 
algorithm [12] is applied to provide faster convergence for same 
accuracy compared with Gauss-Newton optimization, which 
can tremendously benefit the real time system on autonomous 
shuttles. Given the generated map occupancy value M(Pm) 

corresponding to the continuous map point loca-
tionPm = (xm, ym)T, our goal is to find the rigid transformation 
ξ = (px, py, θ)T which minimizes the overall summation of occu-
pancy error between the current scan end points and the most 
updated map, consequently the objective function and desired 
rigid transformation can be defined as:
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where n is the number of scan end points, si = (si, x, si, y)T 
is the world coordinate of the transformed scan end point. 
Si(ξ) is a function of ξ that transforms scan end point coordi-
nate into world system, expressed as:
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and M(Si(ξ)) ∈ [0, 1] is the occupancy value at the location 
given by Si(ξ). Once this is performed, the optimal transforma-
tion that best aligns the current frame with the most updated 
map points is obtained.

This quadratic cost function E can be solved by Levenberg-
Marquardt algorithm [13] efficiently. Starting from an initial 
estimation of the transformation, e.g. the optimal transforma-
tion provided in last frame, ξ0, in every iteration, a transfor-
mation update Δξis added to the accumulated transformation 
so far, ξ, so as to move forward to the minimum point and 
further minimize the function. Intuitively, by each iteration 
step, the cost function is closer to 0:

 E M S
i
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i= - +( )( )éë ùû ®
=
å

1

2
1 0x xD  (14)

By replacing M(Si(ξ + Δξ)) with its Taylor series expan-
sion, we obtain
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By letting the partial derivative with respect to Δξ equal 
to 0:
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according to Levenberg-Marquardt algorithm, the 
optimal solution for Δξ can be determined by:
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where wi is weight associated with point Pi, which mainly 
down weights the low quality scan end points with big error 

 FIGURE 6  Projected 2D scan end points.
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and hence enhance robustness against noise [14]. λ is a 
damping parameter (initially set to 0.01 in this work), I is 
identity matrix, H is weighted approximate Hessian matrix, 
defined by:

  H w M S
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By solving ∆ξ, ξ is updated by:

 x x x¬ + D  (19)

and that makes ξ iteratively move forward to the optimal 
transformation ξ∗.

In contrast to the practical implementation in Hector 
SLAM [5], where fixed iteration step setting is employed to 
evaluate the Gauss-Newton optimization, in addition to 
setting a maximum iteration step (10 in this work), we hereby 
propose a more reasonable stop condition before reaching the 
maximum iteration step, which has been proven to ensure 
sufficient convergence while avoiding unnecessary iterations 
caused by oscillation around the optimal solution:

 � �Dx e<  (20)

where operator ‖∙‖ denotes Frobenius norm, ε is a param-
eter for threshold and is set to 0.001 in this work. Ek is the cost 
function in the kth iteration step.

Real World Experiments
We conducted extensive experimental validations of our 
system including offline SLAM system test on collected data 
as well as real time field experiment in the area around the 
initial autonomous vehicle (AV) pilot test route, a small 
segment in an underserved area of campus designated by The 
Ohio State University, as shown in Figure 7. All the algorithms 
relevant to LIDAR data processing and SLAM as described 
above are implemented in C++ because of its efficiency of real 
time performance. Performances are evaluated between the 
SLAM system proposed in [5] and the extended version 
proposed in this paper. Traditional path following experiment 
result based on high accuracy GPS similar to the previous 
work is compared with this innovative SLAM based path 
following experiment result, demonstrating the feasibility and 
effectiveness of this compounded system. Note that random-
ness is inevitably introduced by probabilistic occupancy grid 
map model in the SLAM system. For this reason, the experi-
ment results are reported based on the median performance 
of several runs.

Real time SLAM algorithm is carried out with an 
I7-6700HQ (8 cores @ 2.60 GHz), NVIDIA Titan X (Pascal)/
PCIe/SSE2 and 4 Gb RAM on the Robot Operating System 
(ROS) [15], an open source operating system providing 
services designed for heterogeneous computer cluster in Linux 
environment. User Datagram Protocol (UDP) communication 
is built up between ROS and MABx for localization informa-
tion transfer. Regional localization information delivered by 
SLAM algorithm is sent to MABx for further decision making 
and control strategy, e.g. longitudinal or lateral control.

SLAM Evaluation
In order to quantitatively evaluate our proposed SLAM system 
against Hector SLAM, both SLAM systems are tested on the 
same LIDAR data collected around our lab, Car-West. Due to 
the absence of “ground truth”, alignment error yielded in both 
algorithms is reported for comparison. Ideally, with sufficient 
accuracy, the alignment error (described in equation (11)) 
should be very small. However, inevitably introduced sensor 
noise and non-smooth approximation of the optimization 
model make the solution of pose estimation only able to 
approach real pose but never perfectly equivalent and hence 
total alignment error always exists. Therefore, in the same 
context, the smaller the alignment error, the higher the 
accuracy that is achieved and hereby we evaluate the perfor-
mance by comparing their alignment error and iterations 
implemented in each alignment, which can reflect their estima-
tion accuracy as well as their convergence speed. Considering 
that offline SLAM accuracy is similar to its real time accuracy, 
this comparison can effectively validate the overall perfor-
mance of our proposed SLAM system against the Hector SLAM.

 FIGURE 7  Autonomous vehicle test route from Car-West to 
Car (scale 1:8000).
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The ultimate map generated by our proposed SLAM 
system is overlapped with the same location obtained from 
Google Earth for comparison convenience as shown in 
Figure 8, where the map generated by our proposed SLAM is 
in shadow and red line is the test trajectory. It is important to 
note that the map from Google Earth is not strictly top down 
view. Thus here a minor shift is necessarily used to keep the 
edges of the mapped buildings consistent with their actual 
corresponding edges in Google Earth. In this experiment, raw 
LIDAR data is initially collected by VLP-16 along the test 
trajectory which starts from the backyard of Car-West, passing 
through an open field which is sufficiently challenging because 
of the limited landscapes for matching alignment and texture-
less wall. Another challenging part of this test trajectory is a 
sharp 180 degree turn in the front of the parking lot of the lab 
building, which demands fast convergence and robustness of 
the nonlinear optimization model implemented in the 
SLAM system.

Figure 9 shows both complete and regional localization 
estimation from the two SLAM systems along the test trajec-
tory. The smoother localization given by our proposed SLAM 

system with the integrated automated drive control systems 
can dramatically improve passenger comfort while taking a 
ride in the shuttle. Table I illustrates the average alignment 
error and average iteration steps required between the two 
SLAM systems. It can be clearly observed that in some runs, 
our proposed SLAM can effectively reduce the alignment 
error to a relatively lower level despite the fact that in almost 
half of the runs the benefit is not distinct. Results of the 
average alignment error from Figure 10 can further prove 
this property. This can be attributed to the defect of this 
optimization based SLAM system where global minimum 
cannot be guaranteed and scan end point outliers can inevi-
tably introduce noise to the system. Therefore, a reliable 
preprocessing model of the scan end points is desired as an 
extension to this framework, which may be an interesting 
topic in future work. Although in our proposed SLAM 
system additional iteration steps are sacrificed for better 
alignment compared with Hector SLAM, in which the itera-
tion step is set to a fixed value and naturally convergence 
cannot be guaranteed, the increased iteration step is still in 
an acceptable range for real time performance according to 
our real-time experiments.

Real Time Path Following 
Performance
In addition to quantitative evaluation of our proposed SLAM 
system, various real world experiments are also conducted to 
validate its feasibility and adaptivity of integration with the 
control system. We first manually drive the shuttle along the 
pre-determined trajectory around our lab building, as shown 
in Figure 11, to collect GPS points, from which the desired 
path is then generated for path following reference.

 FIGURE 8  Generated map overlapped with Google Earth.
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 FIGURE 9  Trajectory comparison between our proposed 
SLAM (blue) with Hector SLAM (red).
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 FIGURE 10  Trajectory on satellite image.
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TABLE 1 Performance comparison between our proposed 
SLAM with Hector SLAM. Alignment error is accumulated error 
of occupancy value, which is dimensionless.

Proposed SLAM Hector SLAM
Average alignment 
error

78.759 84.107

Average iteration 
step

6.557 3.400

©
 S

A
E 

In
te

rn
at

io
na

l

Downloaded from SAE International by Levent Guvenc, Tuesday, March 05, 2019



 8 LOCALIZATION AND PERCEPTION FOR CONTROL AND DECISION MAKING

© 2018 SAE International. All Rights Reserved.

Figures 12 and 13 show the actual path following trajec-
tory performed by our proposed SLAM system and RTK GPS 
separately compared with the desired path. The coordinate of 
starting position is set to the origin in the following plots for 
comparison convenience. It can be observed that similar to 
GPS, SLAM based path following can be achieved comparable 
to GPS based result, though with occasional minor error, 
which again proved the supplemental functionality of our 
proposed SLAM system in GPS not accessible cases. Figure 13 
shows the root-mean-square error (RMSE) along the whole 
path following trajectory performed by SLAM compared with 
the same experiment setting but performed by differential 
GPS. The shuttle speed of both path following approaches are 
kept at an average value of 12 km/h. As can be seen from the 
experimental results, conventional path following that relies 
on highly accurate differential GPS has the expected perfor-
mance with appropriate lateral controller design. The overall 
performance of GPS is better than SLAM, but SLAM based 
path following tends to have even smaller RMSE at some 
regions, e.g. at points of 0.7 × 105, 1.5 × 105, 1.8 × 105 which 
are at the corners of the trajectory. The fact suggests that this 
SLAM system can provide precise estimation of the shuttle 

orientation while there may exist some delay or inaccuracy in 
the orientation angle provided by differential GPS, which is 
computed based on compass. It demonstrates that localization 
and perception system that purely relies on LIDAR can supple-
ment the cases when GPS is not available or a lower cost and 
hence lower accuracy GPS is desirable for intelligent shuttles.

HiL Studies
Hardware in the Loop (HiL) setup is crucial for faster develop-
ment of controllers and algorithms, since it provides a realistic 
virtual proving ground before the implementation and 
deployment phases. To create this realistic virtual proving 
ground, real world scenarios should be replicated with as 
many aspects as possible. This includes emulation of sensors, 
addition of traffic, addition of hardware and replication of real 
world routes. For this paper, the planned actual real-world AV 
shuttle deployment route is selected as a virtual proving ground.

Equipment and Setup
The HiL setup is constructed with hardware as close as possible 
to real-world case. Therefore, MABx is used as a main controller. 
This ECU is also the device we use in our autonomous vehicles 
as low-level controller, which is mentioned in the Hardware and 
Platform section. Since we already develop autonomous driving 
algorithms which runs within this device during the HiL devel-
opment, it allows us to directly implement the algorithms and 
controllers that we developed inside the HiL simulation to a 
real autonomous vehicle. MABx is also connected to a DSRC 
modem similar to the real world case in the HiL simulator. 
Through this modem, it receives the V2X data that is published 
for the vehicles and infrastructure within the simulation. Again, 
similar to the real world case, it is connected to the Scalexio 
computer which mimics the actual vehicle through the 

 FIGURE 11  Desired path compared to our proposed SLAM 
path following trajectory.
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 FIGURE 12  Desired path compared to GPS path 
following trajectory.
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 FIGURE 13  RMSE in lateral direction comparison between 
our proposed SLAM based path following and GPS based 
path following.
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Controller Area Network (CAN) bus. The MABx thinks it is 
connected to a real vehicle while receiving the ego vehicle infor-
mation from CAN bus and publishing actuation commands 
for steering, brake and throttle through the CAN bus.

These commands are picked up by the Scalexio real-time 
vehicle, traffic and sensors simulator. This simulator runs a 
Simulink model with CarSim vehicle dynamics. Vehicle model 
parameters inside CarSim are validated through vehicle 
dynamics experiments previously performed on the real 
vehicle. Therefore, vehicle dynamics simulation provides 
results very close to the real-world. While simulating high-
fidelity vehicle dynamics for ego vehicle, it can also simulate 
roads, sensors, infrastructure through the capabilities of 
CarSim. This feature provides significant advantage since it 
allows us to create numerous test scenarios which have appli-
cations in real world autonomous driving. It is also connected 
to another DSRC modem that publishes V2X information for 
other vehicles and infrastructure that exist inside the simula-
tion environment. All of the DSRC message packets are sent 
within a standard format obtained from SAE J2735 DSRC 
Message Set and using the standard communication rate of 
10 Hz. Overall illustration of the HiL setup and communica-
tion between components are shown in Figure 14.

With this HiL setup, we are able to test numerous kinds 
of different scenarios involving other vehicles, pedestrians 
and road structures, which involves V2X communication. 
Moreover, we are able to test our controllers and autonomous 
driving algorithms and do improvements on them before 
starting road testing.

In this study, the HiL setup discussed above is used to 
provide a virtual proving ground for algorithm and controller 
development before real world deployment of the autonomous 
shuttle. A test scenario is created based on a planned real world 
deployment route, which is explained within the next section, 
followed by discussion of the simulation results.

Test Scenario
A replication of the real world route AV pilot test route was 
created inside CarSim for autonomous driving simulation. 
This route starts from the road in front of the parking lot of 
our research lab building (CAR West) and ends about 0.7 miles 

down the road in front of our main research center (CAR). A 
traffic light is placed on the intersection and vehicle traffic is 
generated within CarSim for main route. Buildings are also 
created as a representation of real ones and placed according 
to their real-world positions. A top-down view of the road 
which is rendered in CarSim, is shown in Figure 15.

The path to be followed is generated from the GPS points 
on the road and vehicle is set to autonomously drive on this 
path, in other words, to follow the route while making deci-
sions according to the situations it comes across during the 
drive. GPS and Leddar sensors are virtually simulated in 
CarSim software while DSRC messages are received through 
real hardware. Therefore, the virtual simulation vehicle is 
equipped with a real DSRC radio, soft GPS and a soft Leddar 
sensor. In this specific scenario, DSRC radio is mainly used 
for determination of the traffic light state in the intersection. 
Leddar sensor is utilized for detection of the distance between 
ego vehicle and preceding vehicle. Since LIDAR emulation is 
currently not available as a solution within CarSim, work is 
still in progress to emulate or simulate LIDAR sensor which 
provides a 3D point cloud data to simulate LIDAR based algo-
rithms such as SLAM in the simulator.

A. Decision Making The vehicle was commanded to 
follow the route while handling some of the situations it may 
come across. For this purpose, a simple decision-making 
strategy is created with three main states. This decision-
making strategy is still work in progress and currently does 
not take all of the possible real-world cases into the account. 
Instead, the scenario is slightly simplified with respect to real 
world conditions in order to use a non-complex decision-
making strategy. These simplifications include the placement 
of the starting and end position onto the main road and 
removal of the intersection cross traffic. These simplifications 
will be removed in further study.

The developed decision making strategy consists of three 
main states. In Cruise Control (CC) state, the vehicle is given 
a velocity profile to follow as a longitudinal control strategy. 
The vehicle follows the route while traveling at the desired 
speed which is decided by this velocity profile, according to 
the map segment the vehicle is currently in. With this velocity 

 FIGURE 14  HiL equipment and communication.
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 FIGURE 15  Top-down view of CAR-CAR West AV 
test route.
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profile, the vehicle can slow down or speed up when necessary, 
according to the road portion it is currently in, and therefore 
can safely approach intersections, sharp curved turns, traffic 
lights and obey traffic speed limits. While carrying out path 
following in CC state, it constantly checks for any DSRC 
messages. In case there is any traffic light nearby on path, 
according to the state of the light it can go to stop state or 
continue. Furthermore, by making use of the Leddar sensor 
information, the vehicle can determine if there is a preceding 
vehicle and according to the distance, it goes to Adaptive 
Cruise Control (ACC) state or Cooperative Adaptive Cruise 
Control (CACC) state in the case of a communicating 
preceding vehicle for car following. In this state, the vehicle 
keeps a safe time gap with the preceding vehicle. The flowchart 
for the simple decision making used is shown in Figure 16.

HiL Simulation Results
After the route is constructed in CarSim and algorithms and 
decision-making is implemented in Simulink, simulation 
testing begins. The vehicle was commanded to follow the route 
while handling the states as is necessary. The speed profile 
shown in Figure 17 is provided to the vehicle to follow while 
it is in CC state.

Speed is decided according to the road segment, where 
these segments are obtained from path generation algorithm 
part. After the simulation, recorded vehicle velocity, vehicle 

decision state (Stop/ACC/CC) and traffic light state (green/
red) are plotted with respect to time as shown in Figure 18.

As seen in Figure 18, the vehicle follows the speed profile 
in CC mode while doing autonomous path following. After 
some time, it comes across a non-communicating preceding 
vehicle which travels at a slower velocity. Instead of following 
the velocity profile, autonomous vehicle goes to ACC mode 
and slows down to adapt to the speed and keep the distance 
between itself and the preceding vehicle constant. Around 
125 second, it comes close to the intersection where there is a 
traffic light which is at red signal state. It waits until the light 
is green and continues its way. This behavior can also be 
confirmed by looking at the velocity and the state of the traffic 
light in Figure 18.

After passing the traffic light, it comes closer to the desti-
nation, slows down and stops. The trajectory of the vehicle is 
also plotted on a satellite image and shown in Figure 19. It is 

 FIGURE 17  Velocity profile with respect to segment.
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 FIGURE 18  Vehicle velocity, behavior and traffic light state 
with respect to simulation time.
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 FIGURE 19  Vehicle trajectory on satellite image.
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 FIGURE 16  Decision making flowchart.
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seen that the vehicle is able to follow the route and autono-
mously handle dynamic driving tasks it can come across while 
travelling through this route. Screenshots from the simulation 
are shown in Figure 20, while the vehicle is doing 
autonomous driving.

Summary/Conclusion
This paper presented preliminary work for a AV shuttle 
deployment in the AV pilot test route of the Ohio State 
University. GPS and LIDAR SLAM are both used for localiza-
tion and path generation. Since GPS based localization and 
path following was presented in our earlier work, this paper 
concentrated on a LIDAR SLAM system which is inherited 
from the Hector SLAM framework and based on the 
Levenberg-Marquardt algorithm. It was demonstrated that 
this LIDAR SLAM algorithm can be used for self-localization 
of our low speed autonomous shuttle. Extensive experiments 
were conducted for offline SLAM performance evaluation as 
well as real world experiments for path following in a parking 
lot for safety. The proposed SLAM system was compared with 
the state of art 2D SLAM approach especially in terms of scan 
alignment accuracy and seen to provide dynamically reason-
able pose estimation. As a pre-requisite to testing autonomous 
driving on the actual AV pilot test route, this route was 

replicated in our HiL simulator for developing and testing low 
level controllers and decision making logic. GPS and Leddar 
sensors, traffic and the traffic light were emulated in the HiL 
simulator while the low level control ECU and the DSRC 
radios used for V2I and V2V communication were real 
hardware. LIDAR sensor emulation work is in progress and 
will allow us to implement LIDAR based algorithms for both 
localization, e.g. SLAM, and obstacle detection and classifica-
tion within the HiL simulator.
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HiL - Hardware-in-the-Loop
FoV - Field Of View
RTK - Real-Time Kinematic
UDP - User Datagram Protocol
DOF - Degrees Of Freedom
IMU - Inertial Measurement Unit
SLAM - Simultaneous Localization And Mapping
LIDAR - Light Detection And Ranging
V2X - Vehicle to Everything
DSRC - Dedicated Short-Range Communication
GPS - Global Positioning Systems
ECU - Electronic Control Unit
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