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ABSTRACT 

In this project, we explore a data-driven approach for monitoring rail infrastructure from the 

dynamic response of a train in revenue-service. Presently, rail inspection is performed either 

visually or with dedicated track geometry cars. We examine a more economical approach where rail 

inspection is performed by analyzing vibration data collected from an operational passenger train. 

The high frequency with which passenger trains travel each section of track means that faults can be 

detected sooner than with dedicated inspection vehicles, and the large number of passes over each 

section of track makes a data-driven approach statistically feasible. With the financial and logistical 

support of the Technologies for Safe and Efficient Transportation University Transportation Center, 

we have deployed a test-system on a light-rail vehicle and have been collecting data for the past two 

years. The collected data underscores two of the main challenges that arise in train-based track 

monitoring: the speed of the train at a given location varies from pass to pass and the position of the 

train is not known precisely.  We explore which feature representations of the data best characterize 

the state of the tracks despite these sources of uncertainty (i.e., in the spatial domain or frequency 

domain), and we examine how consistently change detection approaches can identify track changes 

from the data. We show the accuracy of these different representations, or features, and different 

change detection approaches on two types of track changes, track replacement and tamping (a 

maintenance procedure to improve track geometry), and two types of data, simulated data and 

operational data from our test-system. The sensing, signal processing, and data analysis we present 

could facilitate safer trains and more cost-efficient maintenance in the future. Moreover, this 
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approach is quite general and could be extended to other parts of the infrastructure, including 

bridges.  

 

 

1. Introduction 

While continuous monitoring of engineered assets has become cost effective in fields like 

manufacturing and aerospace, the majority of civil assets are still monitored by visual inspection 

[1,2]. This project focuses on railroad infrastructure, which is monitored by a combination of visual 

inspections and specialty track inspection vehicles, known as track geometry cars [3]. Inspection 

cars are expensive to operate, and as such, they are used to inspect the tracks infrequently [4]. A 

number of researchers have proposed using vibration-based monitoring to assess the track profile as 

a lower-cost alternative to the type of optical sensors currently employed on track geometry cars [5–

10]. All of these studies assume that the sensors are placed on the axle of the train so that they have 

a direct mechanical connection to the track. In addition, they assume the position of the train is 

known, typically achieved by requiring that the inspection car operate at a constant speed.  

In this project, we explore a more economical approach: using operational trains and allowing 

the sensors to be placed inside the cabin [11]. By using operational trains, no dedicated monitoring 

vehicles are required, track closures are avoided, and tracks can be interrogated more frequently. 

The high frequency of interrogation not only means that issues can be flagged more rapidly, but also 

more passes over areas of interest can be collected, meaning greater statistical confidence about the 

state of the track. Lastly, by allowing the sensors to be placed in the cabin, the sensors can be 

installed more easily and can be protected from the external environment. 
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There are numerous challenges that must be overcome for this method to become practical, two 

of which we explore in detail in this project. The first is that a train’s speed over a section of track 

differs with each pass, so methods robust to train speed must be found for comparing data between 

passes. This is particularly challenging when the sensors are in the train’s cabin, because the train’s 

suspension filters the roughness from the track differently depending on speed. The second 

challenge is that we do not know the precise location of the train due to GPS noise, so position 

uncertainty must be considered in attempting to detect track changes from the vibration signal. 

We learned about these challenges through our long-term monitoring project in partnership with 

the Port Authority of Allegheny County. We have placed accelerometers and a GPS antenna on an 

operational light-rail vehicle and have been collecting data over the last two years. We have focused 

on determining which analysis techniques are best suited for train-based monitoring and 

understanding why certain techniques work better than others. To gain insight into the vehicle-based 

monitoring problem, we also modeled a simplified version of the train-track interaction using a 

single degree-of-freedom oscillator travelling over a rough track. This parametric simulation 

allowed us to explore the effects of variable speed and position uncertainty in a controlled setting 

before validating on the light-rail data.  

 Simulation has three main benefits. First, we can generate much more data than we could 

collect from instrumented vehicles. Although we have been collecting data from the light-rail 

system for two years, there are relatively few recorded maintenance events in the rail-network each 

year that we can use to test our approach. With simulation, we can rapidly generate hundreds of 

track changes. Second, we can simulate a wider range of parameters than the narrow band we have 

observed in our operational system. For example, the light-rail vehicle has a natural frequency that 

only varies slightly (due to temperature/passenger loading), but we can simulate a much wider range 
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of natural frequencies to ensure that the analysis techniques we find are general. Third, in the data 

we have collected, we do not have the ground-truth of the train’s position. Through simulation, we 

can study the effect of position error, and propose techniques that work well for the level of error we 

expect in operational systems.  

While our ultimate objective is to build a complete track-monitoring system, we focus in this 

project on two main components required for automated track monitoring: meaningful feature 

extraction from the raw vibration signals and detection of track-changes from these features. For the 

first component, we examined four different features, and then used supervised classification to 

determine which one provides the most reliable information about the state of the track. The fact 

that the train’s speed varies between each pass (or the speed of the travelling damped oscillator in 

simulation) made comparing the data from multiple passes challenging. The signals are recorded in 

the time domain, but given that track changes are localized in space, the spatial domain is often 

more useful for detecting track changes. We examined features based on the time-domain signal, 

spatial-domain signal and frequency-domain signal as well as features based on the energy in the 

signal. We show the discriminate power of these features on data from our parametric simulation as 

well as on the light-rail dataset.   

The second component in our automated detection system, change detection, is a challenging 

task because we do not know a-priori the type of change we are trying to detect [12]. The most 

closely related study of automated track anomaly detection from the vibration signal of a train is that 

done by Molodova et al. [13] where a system for detecting track squats (a type of rail-surface 

indentation) was proposed. In the study, a detection event was triggered by a vibration signal above 

a pre-defined threshold. We aim to build a broader detection system where anomalies are defined as 

changes relative to historical behavior. This ensures that areas with consistently high vibrations (like 
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track switch gear or joints) are not labeled as anomalies, while changes, even in areas with low 

vibration-amplitude, are detected. For example, we will show that our method detects changes in 

track geometry due to tamping that can have safety implications despite their small amplitude. This 

historical detection technique allows for the monitoring of an entire network without manually 

tagging problematic areas as the method in Molodova et al. requires.  

To perform change detection, we experimented with common methods like cumulative sum 

chart control (CUSUM) [14] and generalized likelihood ratio (GLR) [15], as well as a simplistic 

Haar filter [16,17] borrowed from the field of signal processing and computer vision. We report the 

performance of these approaches both on our simulated data as well as on the light-rail dataset.  

Overall, we find that monitoring rail infrastructure from the vibrations recorded in operational 

trains appears to be a promising technique. As a validation, we were able to detect relatively subtle 

changes, such as the changes due to tamping, using the simplistic yet robust proposed method. In 

this project, all of the light-rail data was obtained from a single instrumented vehicle, although a 

larger number of instrumented vehicles could lead to most accurate assessments of the 

infrastructure. Given the projected growth of connected vehicles, the proposed method could 

become an even more relevant method for infrastructure inspection.  

 

2. Rail-Monitoring Method  

Our proposed rail-monitoring method uses data collected from accelerometers inside a train to 

identify changes over time in rail infrastructure. In thinking about how to analyze the data, our first 

goal was to understand how track roughness, filtered by the train’s suspension, produces vibrations 

in the train’s cabin. To do this we used the simplest possible model, a travelling damped oscillator 

as shown in Fig. 1 and conducted a simulation study as will be described in the following section. 
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We sought to determine how best to detect changes in a section of track as the oscillator traveled 

repeatedly over it. This same type of model has been used previously in the rail-monitoring 

literature [8,18], but we extended that work to include variable train speed and differing levels of 

position uncertainty [19]. 

   

2.1 Feature Selection Simulation   

We conducted a simulation of an oscillator travelling over a rough track to understand 

which features, when extracted from its dynamic response, are sensitive to track changes, but robust 

to speed and position uncertainty. The framework of the simulation is shown in Fig. 2. First we 

simulated a track profile and a change in that profile, for various types of track repairs. We then 

simulated the oscillator passing over the roughness 100 times before and after the track-repair, 

where each pass over the track had a unique speed profile, and extracted relevant features from the 

dynamic response of the oscillator. Finally, we quantified how well we could differentiate between 

the data before and after the repair. We repeated the steps of the flow chart in Fig. 2 for oscillators 

of different natural frequencies and damping ratios. The goal was not only to understand the 

behavior of the oscillator for parameters most similar to those of the light-rail system, but also to 

gain insight into how the results would vary for different rail systems so as to make the results more 

general.  

 

 

Fig. 1. Traveling oscillator moving over a rough track. 
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Fig. 2. Flow chart of the simulation. Note that this process was repeated for the three types of track changes, for a variety 

of damping ratios, natural frequencies, and position uncertainty levels.  

 

Fig. 3. Three types of roughness changes (left plots), with detail of each (right plots). (a) A toy-model change (used later 

to provide visual intuition about the simulation) and (b) the detail of the toy-model change.  (c) A spike change, 

characteristic of a broken track before and after replacement, with a realistic track roughness and (d) the detail of the 

spike change at 150m. (e) The tamping change, simulated using a filter with the same smoothing effect of the tamping 

machine and (f) the detail of tamping which occurs between 150m and 250m.  

When simulating the roughness, we generated a 1km section of track for three change types, 

each of which is shown in Fig. 3. The first track change, in Fig. 3a, is a toy-model of roughness used 

to visualize the simulation later in the project (greater detail is shown in Fig. 3b). For the second and 

third track changes (Fig. 3c and Fig. 3e), we simulated two types of track changes we had observed 

in practice, a large localized spike which is removed, simulating the replacement of a broken track 
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(detail in Fig. 3d), and a smoothing of a track profile, simulating tamping (detail in Fig. 3f). For 

each of these realistic changes, we also simulated a realistic track roughness using the parameters 

found in the literature [4]. For the tamping change, we filtered this track roughness as per the 

smoothing effect of the tamping machine in [4], reducing the standard deviation of the track profile 

from 2mm to 1.5mm over a 200m section of track.   

Once we generated the track roughness, the next step was to generate the response of the 

oscillator; two realizations of this process over the same roughness with different speed profiles are 

shown in Fig. 4. Fig. 4a shows the speed profiles in the time domain, while Fig. 4b shows them in 

the spatial domain (i.e. plotted against position). Note when the speed approached zero, no distance 

is covered, producing the scalloping effect in Fig. 4b, a phenomenon which is common when the 

train stops at a station. When generating the speed profile, we limited it to be between 0 and 15m/s 

(35 MPH / 55 KPH) which is the same as that of the light-rail vehicle in our deployment. The toy-

model roughness profile is shown in Fig. 4d as a function of position, but the train experiences this 

profile in the time domain Fig. 4c. We generated the response of the oscillator in Fig. 4e by solving 

the following differential equation [20]:  

, 

where  is the damping ratio of the oscillator,  is the natural frequency of the oscillator,  is the 

displacement of the oscillator, and  the track roughness as shown in Fig. 1. Although the bumps in 

the track occur at the same location in space, due to the difference in the speed profiles, the 

oscillator is excited in the two passes at different points in time, as shown by the arrow in Fig. 4e. 

This posed a challenge when comparing multiple passes in the time domain, so we interpolated the 

signal into the spatial domain as seen in Fig. 4f. The bumps experienced by the oscillator line up 

more closely in the spatial domain, but the effects of varying speed are still visible. The wavelengths 
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of the oscillators (the distance over which they occur) varies considerably in Fig. 4f due to the speed 

(as highlighted in the box), even though the periods of the oscillations (their duration in time) are 

invariant, as can be seen in Fig. 4e.  

  

Fig. 4. Two passes over the toy-roughness shown for illustration: (a) the speed profiles in the time domain; (b) speed 

profiles in the spatial domain; (c) the roughness interpolated in time; (d) the roughness in space; (e) the acceleration of 

the oscillator in time, the arrow shows the period of misalignment; and (f) the acceleration of the oscillator in space, the 

square highlights a location where the wavelengths of the oscillations differ. The oscillator in both passes has a 

frequency of 1.5Hz and a damping ratio of 0.2.  

 

The variation in Fig. 4 highlights one of the challenges in dealing with variable speed; a 

second challenge lies in not knowing the exact position of the oscillator, a phenomenon that occurs 

in practice due to GPS error. In order to plot the signal in the spatial domain (Fig. 4f), we used the 

position of the oscillator, . In practice, we only know some approximation of the position, 

(t), where  is the error. Let us assume that this error is normally distributed with 

zero-mean and standard deviation  We show the effect of this error with different standard 
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deviations in Fig. 5. While in Fig. 4f we showed the vibration signal for two passes in the spatial 

domain, in Fig. 5a we show 200 passes, where each horizontal line is a vibration signal from a 

single pass, and the color is indicative of the vibration size. Note that we show 100 passes before the 

track change, and 100 passes after the track change from Fig. 3a. In Fig. 5b and Fig. 5c we show 

higher levels of position uncertainty by varying the standard deviation of the error, . As the 

position uncertainty grows, detecting changes in the tracks becomes harder, although detection is 

still possible (even visually) for this type of a trivial track change.   

 

Fig. 5. Effect of position uncertainty. Each row of the above plots shows one pass of the oscillator over the toy-model 

roughness shown in Fig. 3. Passes 1-100 correspond to the “before” roughness, while passes 101-200 correspond to the 

“after” roughness. The color along each line represents the acceleration of the oscillator in m/s2 but has been truncated at 

current bounds to show greater clarity. Note that each pass has a unique speed profile. (a) Shows the response of the 

oscillator in space with no position uncertainty, (b) shows the response with added Gaussian uncertainty, with zero mean 

and standard deviation of  , (c) shows the oscillator with . 

 In Fig. 5 we show the vibration signal plotted spatially as a more intuitive signal 

representation given our interest in particular locations of track. To quantify how well this 

representation portrays track condition, we consider it as a feature, and compare it with three other 

features, time-frequency, spatial-frequency and signal-energy, to see which provides the greatest 

discrimination of track condition. Each is described in the equations below where  denotes the 
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Fourier Transform,  is the vector of collected data from nth pass,  is the feature vector, and  is 

the position vector with added noise . 

Time-frequency   

Spatial-frequency  

Spatial-amplitude  

Signal-energy  

where  ;   

The motivation for having two types of frequency-based features is the prevalence of frequency-

based features in the literature [21–24] or features related to frequency, such as wavelets [25].  

“Time” here means the raw signal, whereas “spatial” denotes the signal has been linearly 

interpolated spatially given its speed profile. The signal-energy feature is similar to the spatial-

amplitude, but it is squared prior to interpolation. This squaring makes a difference because it makes 

the feature have a non-zero mean. Prior to classification, the spatial-amplitude and signal-energy 

features were averaged over a 25m section of track. This step increased robustness to position 

uncertainty for both features, but can filter out some zero-mean oscillations.   

To evaluate the features, we used supervised classification; the goal was to see which 

features allow for the clearest indication of track change. Here we used a support vector machine 

classifier with a linear kernel (we choose a simple model to avoid overfitting given the relatively 

few passes we use in our experiments with operational data). We selected 150 passes out of the 

original 200 for training (the remaining 50 are for testing), and we repeated for 50 fold-cross 

validation. High classification accuracy means that the data is more easily separable, i.e. the feature 

is useful. The features were long (even in this simulation, 104 samples), so we select only the 50 

most discriminative indices of the feature.  To accomplish this, we use the technique described in 
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[23], where we find the mean signal for both classes from the training data, then define the most 

discriminative indices as those with the greatest difference between the two mean signals. In total, 

to explore feature selection, we simulate 180,000 passes of the oscillator over 1km of simulated 

track (3 types of track changes × 6 damping ratios × 5 natural frequencies × 10 levels of position 

uncertainty × 200 passes each). 

 

2.2 Feature Selection Simulation Results 

The classification results from the simulation are shown in Fig. 6 and Fig. 7. This was a binary 

classification, so 50% accuracy would mean the labels are random, while higher accuracy means 

more consistency in determining the state of the track given the selected features. We report 

accuracy while varying the level of position uncertainty (Fig. 6a), the oscillator’s damping ratio 

(Fig. 6b) and the oscillator’s natural frequency (Fig. 6c).  In Fig. 6a, we kept the damping and 

frequency ratio constant at values we observe in the light-rail system ( ; ) [26]. 

We found that time-frequency features provide low accuracy at all levels of position uncertainty, 

spatial-amplitude and spatial-frequency fall in accuracy as the position uncertainty increases, and 

signal-energy offer relatively high accuracy at all levels of position uncertainty. It is not surprising 

that time-frequency performed badly because it is sensitive to speed changes, which we varied 

between each run. Spatial-amplitude and spatial-frequency require interpolation by , so they are 

sensitive to increases in the uncertainty . Signal-energy also relies on interpolation by  but is 

less sensitive to position error as it represents the level of roughness or excitation caused by the 

track, rather than the specific state of the oscillator (it is always positive independent of the 

oscillator).  
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We also investigated the effect of varying the damping ratio (Fig. 6b) and the natural frequency 

(Fig. 6c) if the location uncertainty is kept constant at m. For this level of position 

uncertainty, signal-energy is the only feature with strong discriminative power. When the damping 

ratio was zero, the oscillations kept growing over the course of a pass, so the localized track change 

are undetectable even from the signal-energy feature. As the damping ratio is increased, signal-

energy peaks at  then decreases as the damping ratio grows because the changes are too 

localized and difficult to detect given the position uncertainty. For variation of the natural frequency 

(Fig. 7c), the stiffer the oscillator, the more it transmits large track changes to the sprung mass, 

leading to easier detection with the signal-energy feature for high values of the natural frequency. In 

the case of tamping in Fig. 7c, the reverse trend occurs. Here, a stiffer oscillator leads to more 

localized changes and because tamping is effectively many small smoothing changes over a section 

of track, these localized changes are more difficult to detect.  

Overall, the signal-energy feature outperforms the other features as it is robust to position 

uncertainty for both types of track changes. This is particularly convenient as the signal-energy 

feature could potentially be universally applied in this type of monitoring system. In industry, the 

most common parameter for measuring track geometry is the standard deviation of the track profile, 

and signal-energy is related to this parameter, as both involve squaring their respective data points. 

The vibration signal is effectively a measure of the track profile, albeit filtered by the train’s 

suspension, so the strong performance of signal-energy shows that the traditional parameters for 

track monitoring can inspire new features that are useful for our statistical track monitoring system.  
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Fig. 6. Classification accuracy for spike change. (a) Effect of position uncertainty for oscillator with  and 

. (b) Effect of varying damping ratio while uncertainty  and   (c) Effect of varying natural 

frequency while  and uncertainty . 

 

 

Fig. 7. Classification accuracy for tamping change. (a) Effect of position uncertainty for oscillator with  and 

. (b) Effect of varying damping ratio while uncertainty  and   (c) Effect of varying natural 

frequency while  and uncertainty . 

 

2.3 Change Detection Simulation  

Having established that among the different criteria examined, signal-energy represents the most 

robust feature, in this section we explore how we can achieve our second goal: to determine when a 

change occurs in the tracks.  
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Fig. 8. Flow chat of change detection simulation. Note that we repeat this for different track changes and different levels 

of position uncertainty. 

We conducted a simulation to study change detection approaches by following the flow chart shown 

in Fig. 8. First we generated many passes of the train before and after a track change (varying the 

speed profile as in the previous simulation study). We computed the signal-energy feature from the 

vibration signal, then extracted the data at a particular track location across all passes. Although a 

number of change-detection approaches exist, many of them are designed for finding statistical 

change in a scalar quantity. In this application, we compared data from different passes of a moving 

vehicle, so each pass was a vector. To format the data in a way that we could use these general 

change detection approaches, we considered the value of the signal-energy feature at a specific 

location on the track, i, over all passes, n, by building a matrix, . 

 

Using this formulation, we experimented with three different change detection filters: cumulative 

summation control chart (CUSUM), generalized likelihood ratio (GLR) and a Haar filter.  

All three change-detection methods effectively detect when there is a change in the mean-value 

of the feature at a particular location of track compared to that value for a window (set number) of 

previous passes. Details of each will be presented briefly to explain how they are applied within the 

two dimensional feature matrix.  
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1.  Cumulative summation control chart (CUSUM) estimates the mean value over a window of 

previous passes (known as a sliding window), then compares the current (or most recent 

value) to the historic mean [15]. If there is a succession of passes all deviating from the 

mean in one direction, it will trigger a detection event because it is likely that the mean has 

changed. Mathematically, the mean,  is estimated from historical data over a window of 

 previous points.  

 

We then find how the data from the current pass differs from this mean.  

 

Finally we add this difference, , to a running sum of the differences.  

 

If the data varies from the mean consistently in one direction (positive or negative) 

intuitively the data has changed because the mean no longer represents the data. We say a 

change has occurred when the magnitude of exceeds a threshold, h, . 

2. The generalized likelihood ratio (GLR) looks for a change in the underlying distribution, 

and quantifies the log-likelihood that the recent data is derived from the historical 

distribution [15]. If the recent data appears dissimilar from the historical data, then the 

approach will trigger a detection event. Mathematically, let us call the first window of data 

, and the second window of data  
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The distribution of  is defined by  and the distribution of  by . We want to see the 

likelihood ( ) that  comes from the same distribution as , , versus the likelihood it 

comes from  . 

 

We say a change has occurred when  exceeds a threshold, , i.e . In other 

words, beyond some threshold, the data is so much more likely to have come from a new 

distribution than from the historical distribution that we say a change in the data has 

occurred. 

3. The Haar filter finds the difference between the sum of recent data and the sum of historical 

data, triggering a detection event if the difference is too large. Mathematically, the 

difference between the two windows of data of width  can be written as  

 

As in previous approaches, we say a change has occurred when . This approach 

tends to find locations where a step change has occurred between the two windows of data. 

 

  Each of the approaches relies on a sliding window of data: shorter-sized windows have the 

potential for detecting changes more rapidly after they occur, while longer windows allow for 

greater statistical significance; here we chose a window size of 20 passes, which would allow our 

system to detect a change within a week (assuming a few passes over the track per day). The results 

of applying each of these filters to the simulated changes can be seen in Fig. 9 as will be discussed 

in more detail in the next section. 
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2.4 Change Detection Simulation Results 

In this section, we discuss the performance of the three change-detection approaches described 

previously. Results of each approach applied to one example of each type of simulated track change 

are shown in Fig. 9. Successful change-detection filters should produce a high value after the 

change occurs at the same location in the track, and successful detection has been indicated with a 

red-box. Note that the change is not necessarily detected immediately, as it takes several passes after 

the change to build up statistical significance that a change has indeed occurred. All three 

approaches detected the track change on the left in Fig. 9b-d (with an ideal threshold), while only 

the Haar filter was able to  detect the tamping change in Fig. 9h.  

     

Fig. 9. The change detection filters applied to the data. (a-d) show one example of a track replacement change, where the 

spike (due to a broken track) is removed at 150m, while (e-h) show a tamping change between 150 and 250m. Values in 

each figure (shown in color) have been normalized on [0,1]. The red-boxes indicate the true-positive events that could be 

detected with an ideal threshold. There are no boxes in (f) and (g) as the methods failed to detect the change.  The data 

shown in this figure has no position uncertainty.  
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CUSUM is perhaps the most versatile of the methods, as it could detect a gradual change in the 

mean over time, while GLR and Haar work best for abrupt changes in the data. In our case, we 

assume the track change occurs over a short period of time, so the change is complete before the 

train passes over that section of track again. Given this assumption, GLR and Haar might be 

expected to perform better than CUSUM. GLR is more complex than the Haar filter as it involves 

not only the mean, but also the standard deviation in calculating the distribution of the data before 

and after the change. A change in variance could trigger a detection event, but it is unlikely in our 

application that high variance would be due to an infrastructure change, so GLR is less robust for 

this application. It is the simplicity of the Haar filter that enables it to consistently detect tamping 

along the section of track where it was simulated in Fig. 9h.  

Fig. 9 shows just one example of each type of change, but we quantified the success of each 

approach over the 100 changes we simulated. We defined a true positive as a change detected 

within 20 passes and within 25m of a true change. A false positive was a change detected outside of 

this window. We report false positives and false negatives (true positives that were not detected) for 

a range of thresholds in Fig. 10a, because selecting the appropriate threshold itself can be difficult. 

Methods for selecting the best threshold are beyond the scope of this project, so we report the error 

level assuming the ideal threshold was selected in order to see which change detection technique has 

the most potential.  Assuming false positives, FP, and false negatives, FN, are equally bad, we 

select the threshold level that will minimize the larger of the two errors, which occurs where the 

false negative and false negative curves intersect as show in Fig. 10a. In other words, we want to 

select a threshold, , where 
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In total, for understanding the trade-off in the change detection approaches, we simulated 200,000 

passes (2 types of track changes × 100 track changes × 100 passes × 10 levels of uncertainty).  

 

Fig. 10. Change detection results from the simulation. (a) A typical plot of false negatives (FN) and false positives (FP) 

as the threshold is varied, shown with data for the 100 examples of this type. In this case, the plot is shown for CUSUM 

with no position uncertainty, and where the two lines cross, there is 43% error of both types.  The data has been 

normalized on [0,1] so the threshold spans the whole range. (b) Here we show this minimum error for all three 

approaches and all position uncertainty levels for the spike change. (c) The minimum error for the tamping change.    

 

In Fig. 10b we report the lowest error (i.e. ideal threshold) for all change detection 

approaches on the track change simulation. While the error increased for all methods as position 

uncertainty increases, the Haar filter consistently performed the best. Fig. 10c shows the same error 

quantification but for the tamping change simulation, and again the Haar filters outperforms the 

other methods. Because tamping occurs over a larger section of track, position uncertainty matters 

less as we saw in the classification results shown in Fig. 7a, so it is consistent that the Haar filter 

remains relatively unaffected by position uncertainty. It is interesting that even though all three 

methods are applied to signal-energy data (which itself was robust to position uncertainty when 

classified) the GLR and CUSUM approaches are sensitive to position uncertainty. One reason for 
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this may be that the classifier used in generating Fig. 7a, an SVM, was more robust to position 

uncertainty than the CUSUM or GLR methods.  

   

3.  Validation on the Light-Rail Vehicle Dataset 

The previous sections provide a general understanding of which features and detection filters 

work well to detect changes in a rough track from the dynamic response of a travelling oscillator. In 

this section, we investigate whether the same findings hold true for our test-system deployed on a 

light-rail vehicle.  

 

3.1 The Light-Rail Vehicle Dataset  

We have collected an extensive dataset over the last two years; this is the first study to our 

knowledge on vibration-based track monitoring in which data was collected over such a long period 

while the trains were in operational service. We provide details about our instrumentation, about 

two infrastructure changes of interest, and, finally, we assess the validity of the approaches on this 

dataset.  

The sensors on the train were installed through our partnership with the Port Authority of 

Allegheny County; the location of the sensors can be seen in Fig. 11. We placed two uni-axial 

accelerometers inside the cabin of the train to measure vertical vibrations, one tri-axial 

accelerometer on the central wheel truck, and a BU-353 GPS antenna mounted just under the roof. 

In this project, we only use data from the accelerometer mounted inside the cabin above the front 

wheel-truck, a Vibra-Metrics model 5102 sensor. The train car is a CAF light-rail vehicle that has 

an empty mass of 40 metric tons, and a length of 27m.  
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We have collected data from hundreds of complete passes through the 30km rail network, 

sampling continuously from the GPS at 1Hz and from the accelerometer at 1.6kHz. Details of this 

deployment can also be found in a previous conference proceeding [11]. One of the challenges in 

analyzing the data has been handling the varying speed and the position uncertainty, issues which 

inspired the above simulations.  

 

Fig. 11. Instrumentation of light rail vehicle. We placed a GPS antenna just below the roof the train, the data acquisition 

system in a cabinet near in the conductor, accelerometers inside the main cabin and on the central wheel truck. In this 

project we only used data from the accelerometer highlighted with the red box, which measures vertical vibrations inside 

the cabin of the train.  

 

4.1 Track Change in the Light-Rail Dataset 

In September 2014, the owner of the light-rail system replaced the track in an old road-

crossing. We use this known maintenance activity, where faulty track was replaced with good track, 

to test our signal analysis pipeline.  Fig. 12a and b show two characteristic passes of the train over 

the 1km section of track. In the second pass the train stops at two stations, the first at 200m and the 

second at 520m, whereas in the first pass it only stops at one of the stations (at 200m). The train 
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stops when there are passengers to pick up or let off, which poses a challenge when compared data 

between passes. One hundred passes over this section of track are shown in Fig. 12c, where the 

color indicates the value of accelerations recorded. Although difficult to see in Fig. 12, there is a 

high frequency vibration event when crossing a road at 220m, an event which no longer occurs after 

the 50th pass, when the repair is done. It is much easier to see the change in Fig. 13 because signal-

energy is a better indicator of track state. As the train crosses the road at 220m, high signal-energy 

can be seen in Fig. 13a. This spike is absent in Fig. 13b or after pass #50 in Fig. 13c due to the 

repair.  

Note as well that the first station stop in Fig. 12(a) and Fig. 13(a) occurs just after 200m, 

whereas in (b) it occurs just before 200m. This is likely due to the orientation of the train.  The GPS 

is at one end of the train, and the train always stops at the same location within the station. If the 

orientation of the car changes, the position can differ by 27m, the length of the car. Due to the 

sensor’s location on the train, it will interrogate the tracks near the stations at different speeds. A 

sensor at the front of the train will travel quickly over tracks at the beginning of the station, and 

slowly over tracks towards the end of the station, and the reverse for a sensor at the back of the 

train, adding to the difficulty of comparing data directly between different runs.  
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Fig. 12. Spatial signal. (a) A pass before repair showing both the train speed and vertical vibrations from a sensor inside 

the train. (b) A pass after repair. (c) 50 passes before and 50 passes after the repair, where each pass is a horizontal line 

and the color indicates the value of the vibrations. With the spatial-amplitude feature, the track change is nearly 

impossible to see.    

 

Fig. 13. Signal-energy. (a) A pass before repair showing both the train speed and vertical vibrations from a sensor inside 

the train. (b) A pass after repair. (c) 50 passes before and 50 passes after the repair, where each pass is a horizontal line 

and the color indicates the magnitude of the signal-energy feature.  With the signal-energy feature, the track change is 

clearly visible.  

 

As in the simulation, we extracted different features from the data and used classification to 

determine which features allow the infrastructure change to be detected most readily. In a binary 

classification between the two states, we achieve 91% accuracy in Fig. 14a, drawing data from a 

500m section of track shown in Fig. 14c. The second best feature appears to be the time-frequency 

feature. However, as we saw in the simulation, this feature would not be expected to detect track 

changes given the train’s variable speed. It is far more likely that the feature is detecting temperature 

differences between the two classes as the data was collected over a year, and Pittsburgh is a 

temperate region with significant temperature variability. This hypothesis is confirmed by Fig. 14b 

where we show the adjacent 500m section of track where no work was done. Classification using 
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the frequency-feature allows for 78% accuracy despite the fact that the infrastructure has not 

changed, whereas classification using the signal-energy feature allows for 67% accuracy (close to 

random) meaning it is more robust to environmental conditions. Again we use 75% of the data for 

training, 25% for testing and 50-fold cross validation as in the classification in the simulation study.  

 

 

Fig. 14. Classification accuracy of a 500m section (a) of a track where rails were replaced, and (b) of a track nearby 

where no work was done. (c) Shows where the data for the classification was drawn from and the two classes used in the 

binary classification. High classification accuracy means the classes are separable, and 50% accuracy means the classes 

are not separable leading to random classification. Signal-energy is sensitive to track changes because it achieves 91% 

accuracy when there is a track change, and is close to random when there are no track changes, meaning it is not 

classifying based on environmental factors.    

 

4.2 Tamping Change in the Light-Rail Dataset 

 Tamping is an important maintenance procedure used to improve track geometry. The 

tamping machine (shown in Fig. 15) measures the profile of the track, then adjusts the ballast below 

the track to produce a smoother, safer ride. One future goal could be to use our data to optimize 

tamping schedules. At this early stage though, we are most interested in identifying which features 

are sensitive to tamping, and which detection approach works best for this feature. In the summer of 
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2014, three 500m sections of track were tamped as shown in Fig. 16, starting at 1500m, 2000m and 

2500m. Unlike the track change in the previous section, the change due to tamping is subtle, but 

occurs over a much larger section of track. Notice how in the regions with no tamping, the signal is 

relatively consistent over all 100 passes, while in the areas with tamping, there is more signal-

energy (i.e. more bumpy ride) before tamping, and less signal-energy (i.e. smoother ride) after 

tamping.  

We tested all four features in a binary classification to discriminate between before and after 

a tamping event; we found that the signal-energy feature is the best for detecting this change. The 

classes in the classification and the region from which the data was drawn are shown in Fig. 17c. 

Signal-energy achieves 90% classification accuracy (shown in Fig. 17a) with a change, and <60% 

accuracy (effectively random) in Fig. 17b when there is no change. This means that the signal-

energy feature is classifying due to the change in the track and not an environmental variable. 

Frequency and spatial-frequency features on the other hand report 70% accuracy if there is a change 

(as in Fig. 17a), and 70% with no change (as in Fig. 17b). We can assume the discriminative power 

stems from temperature changes and not from infrastructure changes. Note that for consistency, we 

only classified data from a 500m section of track as in the previous section, but the tamping occurs 

over a larger region. Classification accuracy can be slightly increased by considering a larger 

section of track.  
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Fig. 15. The tamping machine used on the light-rail system. 

 

Fig. 16. Region of track where tamping occurs with (a) showing the spatial-amplitude feature and (b) showing the signal-

energy feature. The tamping maintenance was done three times on three separate days due to the limitations on how 

much work the tamping machine can do per day. Note that the peaks between 2400 and 2500m (and between 400 and 

500m) are due to switchgear in the tracks.  
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Fig. 17. Classification accuracy of a 500m section (a) of a track where tamping work was done, and (b) of a track nearby 

where no work was done. As in Fig. 14, the high accuracy of the signal-energy feature where there is track work shows it 

is sensitive to infrastructure changes, and the low accuracy (almost random) where no work has been done shows it is 

robust to environmental variables. (c) We show the data used for the classification in relation to Fig. 16b, both in terms 

of which 500m sections of track were used, and how the two classes in the binary classification were defined.  

 

4.3 Detecting Change in the Light-Rail Dataset  

The ultimate goal of the project is to automatically detect changes in the infrastructure. As such, 

change detection is a vital step. Although we have collected hundreds of passes through the rail-

network, we still have relatively few known infrastructure changes. Thus, we do not have sufficient 

data to rigorously test different threshold levels as we did in the simulation. Instead, we applied the 

change detection methods on the operational data and present the results with a basic threshold 

applied in Fig. 18. This figure mirrors the results in Fig. 9, where the raw data and all three 

approaches are shown.  Figure 19a shows the signal-energy feature for the track replacement 

change, and Figure 19b for the tamping changes. Fig. 18 c-h show the results of applying the three 

change detection approaches to each of these two changes, in which the red-boxes indicate the 

change-detection approach was successful.   

For both types of track changes on the light-rail dataset, the Haar filter performed the best, 

reliably detecting both track and tamping changes (Fig. 18d and h) as predicted by our simulation 

results. For the track-type change, CUSUM and Haar filter (Fig. 18b and Fig. 18d respectively) 

could detect a change with zero error given the correct threshold.  For the tamping change, CUSUM 

and GLR fail to detect the change at all. CUSUM fails because the variability in the sections with 

high energy (like the switchgear at 2500m) are larger than the change from tamping itself, which 

occurs on low-energy sections of track. It is unclear why the GLR method has false-positives, 
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although it could be due to the GLR’s sensitivity to changes in variance as discussed earlier. It is 

important to note that the Haar filter succeeds in our original goal: detecting changes relative to 

historical behavior, rather than simply detecting areas of the track that produce large vibrations. The 

high values around 2500m in Fig. 18a due to switchgear do not affect the detection in Fig. 18h. 

   

Fig. 18. Change detection on the light-rail dataset for the track replacement change at Potomac Crossing (a)-(d) and 

tamping change (e)-(h). Panels (a) and (e) show the signal-energy feature while (b)-(d) and (f)-(h) show the respective 

change detection techniques. The red-boxes indicate true-positive changes that could be detected with an appropriate 

threshold.  

 

4. Concluding Remarks and Recommendations   

In this project, we have proposed a new way to monitor rail infrastructure by recording data 

from accelerometers in the cabin of a train while it operates in revenue service. To realize such a 

system, new features must be extracted from the vibration signal that are able to characterize the 

rails despite the filtering from the train’s suspension, the train’s changing speed, and the noise in the 
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GPS location. We tested four features, time-frequency, spatial-frequency, spatial-domain and 

signal-energy on simulated data and found signal-energy to be the best feature for detecting both 

track changes and tamping changes. We then tested the same features on the operational data from 

the light-rail system, and showed that signal-energy was the most sensitive to infrastructure changes 

and the least sensitive to environmental variability. Both in our simulations and in the operational 

data, we found that frequency-based features do not work well, despite their widespread use in 

many structural health-monitoring studies.  

In addition to feature extraction, we studied a variety of unsupervised change detection 

approaches, including CUSUM, GLR, and the Haar filter. We found that the Haar filter 

outperformed the other approaches on both the simulated data and operational data, as it was 

particularly robust to position uncertainty.  

From the results of this project, it appears that vehicle-based monitoring could be a low-cost 

approach to monitor our infrastructure; we were able to detect changes on an operational system 

using just a single sensor on a train in revenue service.  

Future work on train-based rail-infrastructure monitoring should look at additional types of 

changes in rail infrastructure, and more instances of each type. In this project, we considered 

statistical approaches that largely ignore the underlying physics of the problem; hybrid approaches, 

which combine statistics with a physics-based approach could provide additional insight.   

Because connected vehicles are becoming more and more prevalent, we believe that 

collecting the requisite data for the proposed type of monitoring will become easier. The more data 

available, the more accurate the monitoring could be. However approaches capable of fusing data 

from heterogeneous vehicles and sensors must be developed.  
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This type of low-cost monitoring system could compliment traditional inspection techniques 

to provide continuous and objective information to infrastructure owners. This information would 

allow for more targeted maintenance interventions, improving the reliability, safety and efficiency 

of rail transit.  
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