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1. Project overview 
 

1.1. Background 
 
Central to smart cities is the complex nature of interrelationships among various urban systems. 
Linking all urban systems is the system users. The individual daily activities engage using 
those urban systems at certain time of day and locations. There may exist clear spatial and 
temporal correlations among usage patterns across all urban systems. A general idea is to fuse 
and analyze user demand and usage data from transportation, energy, water, building systems 
and social media platforms, as shown in Fig. 1, to discover the spatiotemporal usage patterns 
among those systems. This enables cross-system demand prediction and management. For 
some users, the usage of one urban system is likely to be used minutes or hours ahead of their 
usage of other urban system(s) as a result of daily activity chains. Therefore, the spatiotemporal 
usage of an urban system can be accurately predicted a few minutes or hours ahead by real-
time sensing user patterns of other urban system(s). This is otherwise hard to accomplish by 
solely monitoring one “siloed” system. Ultimately, real-time control strategies for demand 
management of one urban system can be developed with efficient real-time demand prediction 
upon other urban system(s).  
 

 
 

Fig. 1. Interdependency of some urban systems: their system user patterns are inter-related both temporally 
and spatially (social media platforms graph source: www.prestigesocialmedia.com.au). 

 
This project is the first step to achieve the ultimate goal by developing a reliable traffic 
prediction framework which makes use of inter-correlations among urban systems for 
increasing forecasting accuracy and horizons. In this project, we propose a general 
crowdsourced data-driven framework to effectively collect, sense and analyze people’s daily 
activity patterns from two interdependent urban systems, which includes energy system and 
social media system, for improving congestion predictions in transportation systems. We 
further focus our applications on predicting congestions during morning periods before 
commuter departures in the early morning, such as before 5AM. This problem setting is 

http://www.prestigesocialmedia.com.au/


meaningful in practice because knowing in advance the accurate traffic conditions of a road 
before leaving homes enables travelers to better plan their trips. Traffic control strategies can 
also be effectively adjusted in time before peak hours thanks to the long forecasting horizon.  
 

 
Fig. 2(a). Morning congestion patterns. Fig. 2(b). Variance of congestion starting time. 

  

  
Fig. 2(c). Autoregressive predictions on an 

uncongested day. 
Fig. 2(d). Autoregressive predictions on a congested 

day. 
 
However, most existing methods which solely use information from traffic systems, such as 
autoregressive time-series models, could actually fail under this problem setting. Fig. 2 
conceptually illustrates why using real-time traffic data is usually not sufficient for morning 
congestion predictions. Because autoregressive models rely primarily on correlations between 
future and past traffic states, they could fail if past traffic dynamics contain little information, 
or in other words, additional factors (e.g. weather, incidents, etc.) have more impacts on future 
traffic. Morning congestion prediction falls exactly into this situation. Roads to be congested 
in morning peak hours, such as Road 2 in Fig. 2(a), have been in free-flow conditions for hours 
before the model makes predictions at 5 AM. Real-time monitoring the speed or travel time 
does not necessarily help predict the exact time of traffic break-down, nor would historical 
data help as much due to day-to-day variation as shown in Fig. 2(b). The performance of 
autoregressive models for morning congestion predictions are shown in Fig. 2(c) and Fig. 2(d). 
Because early morning traffic contains very little information to explain peak congestion 
variances, the autoregressive model can at best predict the road’s historical average congestion 



rates. Finally, the morning traffic predictions for congested days, as shown in Fig. 2(c), and 
uncongested days, as shown in Fig. 2(d) on a same road segment can look very similar. 
 
Things are different if taking energy and social media systems into consideration. There may 
exist spatiotemporal relations between the morning travel demand and crowd activities patterns 
(e.g. sleep/wake up time, etc.) extracted from electricity usage data and geocoded social media 
posting activity and content. Those daily characteristics may be partially attributed to those 
commuters’ activities at midnight or early in the morning (such as 3–5 am). Therefore, real-
time traffic prediction can be complemented and enhanced by mining additional real-time 
electricity usage and social media data in addition to traffic data. We hope to provide more 
accurate prediction for real-time traffic. In principle, we would expect electricity usage and 
social media data to add additional insights for a better traffic prediction, such as to explain 
what kinds of spatiotemporal electricity and social media patterns are precursors for morning 
congestions. 
 
For commuters, the developed framework is helpful for planning trips because morning 
congestion with fine-grained spatial and temporal resolutions are predicted long before peak 
hours. For traffic management agencies, this method is capable of evaluating past traffic 
network congestion and helping adjust traffic control policies in time because of its longer 
forecasting horizons. For researchers, this study provides new approaches to sense crowd 
activity patterns from user interactions with multiple urban systems and illustrates the 
relationships between people’s activities and traffic congestion through energy usage and 
social media perspectives. 
 
1.2. Problem statement 
 
The main objective of this project is to predict the congestion on a particular road segment in 
the traffic network some time during morning periods, which are defined as from 5:00/6:00 
AM to 10:59 AM, using electricity or social data available until early morning, which is 
defined as before 5:00 AM on that day. The reference (free-flow) speed 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟 of road segment 
𝑖𝑖 is calculated as the 85 percentiles of observed speed on that segment for all time periods (Eq. 
1), which is a commonly-used way to determine reference speed from probe-based speed data. 
Congestion is described by congestion rates (𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑). The congestion rate on a road segment is 
defined in Eq. 2 as the percentage decrease from the free-flow it (reference) traffic speed of 
the road 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟 to the observed speed 𝑣𝑣𝑖𝑖𝑖𝑖𝑑𝑑 . A road segment is defined as congested at time 𝑡𝑡 (𝑆𝑆𝑖𝑖𝑖𝑖𝑑𝑑= 
1) if observed speeds drop below rthres of reference speed, i.e., 𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑 ≥𝑟𝑟𝑖𝑖ℎ𝑟𝑟𝑟𝑟𝑟𝑟, for at least t min 
minutes, as defined in Eq. 3. For each segment 𝑖𝑖 on day 𝑑𝑑, we measure its congestion starting 
time 𝐶𝐶𝑆𝑆𝐶𝐶𝑖𝑖𝑑𝑑 and duration 𝐶𝐶𝐶𝐶𝑖𝑖𝑑𝑑. If multiple congested periods occur, congested starting time is 
defined as the starting point of the first congestion period. Congestion duration is defined as 
the interval between the first congestion starting point and the last congestion ending point. If 
any congestion period exists on segment 𝑖𝑖 during morning periods of day 𝑑𝑑, we say congestion 
occurs, i.e., 𝑂𝑂𝑖𝑖𝑑𝑑= 1. Three types of congestion measurements are predicted: (1) congestion 
occurrences 𝑂𝑂𝑖𝑖𝑑𝑑, where the output is 100 a binary prediction indicating if any period in morning 
on day d is congested; (2) congestion starting time (𝐶𝐶𝑆𝑆𝐶𝐶𝑖𝑖𝑑𝑑), where the continuous output is the 



starting point of congested periods on day d, and (3) congestion duration (𝐶𝐶𝐶𝐶𝑖𝑖𝑑𝑑), where the 
continuous output is the duration between the starting and ending point of congested periods. 
 

𝑣𝑣𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑃𝑃0.85(𝑣𝑣𝑖𝑖𝑖𝑖𝑑𝑑) (1) 

𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑 = 1 − 𝑣𝑣𝑖𝑖𝑖𝑖𝑑𝑑/𝑣𝑣𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟 (2) 

𝑆𝑆𝑖𝑖𝑖𝑖𝑑𝑑 = �1, if 𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑,𝑟𝑟𝑖𝑖𝑖𝑖+1𝑑𝑑 ,…,𝑟𝑟𝑖𝑖𝑖𝑖+𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑  

0, otherwise
 

(3) 

 
 

 
2. Using time-of-day electricity usage data to predict morning 

roadway congestion 
 

In this section, we consider predicting traffic congestion at a morning time 𝑡𝑡, using household-
level electricity usage data during the time interval [𝑡𝑡′, 𝑡𝑡′′] that can be up to a few hours earlier 
than 𝑡𝑡 on the same day. [𝑡𝑡′, 𝑡𝑡′′] is set as [12am, 6am] in this section. As we will show later, 
this predictor can outperform a predictor using only the traffic data, even at the time much 
closer to t than t″. This is because morning traffic breakdown is largely attributed to random 
demand characteristics, such as demand level, driving behavior, and departure time from home. 
Those demand characteristics can hardly be predicted using traffic data only in the real time, 
and oftentimes the traffic break-down may occur in the morning peak without sufficient prior 
signs from traffic data. Our hope is that electricity use at midnight or in the very early morning 
can partially reveal those demand characteristics to some extent, and therefore can help better 
predict traffic congestion for some locations. 
 
2.1. Data sources 

 
2.1.1. Electricity usage data 

 
The electricity usage data are acquired from an Advanced Metering Infrastructure (AMI) 
program run by Pecan Street Inc. There were around 400 households participating in the 
program in the year of 2014. There were some households entering and leaving this program 
during the year. We choose those households that stayed the entire year of 2014, in all 322 
households. For each of those households, the electricity use (in kW h) were recorded in 5 min 
time intervals throughout the year. We consider all 251 weekdays in 2014. The daily use 
profiles from midnight to 6 am are normalized in a way that its sum of squares is one. Though 
each household is referred to with a unique reference ID number, those households/users are 
completely anonymous. Their locations and any other private information are filtered out and 
unknown to this research. 
 
2.1.2. Traffic data 
 
Historical travel time data are acquired from National Performance Management Research 
Data Set (NPMRDS). The travel time data were provided in 5-min time intervals, and cover 



highways and major roads around the Austin Metropolitan Area. Its spatial resolution is 
defined by Traffic Management Channels (TMC), and acquired from NPMRDS as well. As 
shown in Fig. 3, we select 15 TMC road segments in this study. 
 

 
 

Fig. 3. The 15 road segments used in this section. 

 
2.2. Feature extraction 
 
2.2.1. Cluster analysis 
 
We first use a simple K-means clustering with K = 2 to separate all workdays into two seasons. 
A larger portion of electricity is consumed during the night in summer than winter, whereas 
more electricity is used during the morning in winter than summer. In this study, we only use 
weekdays in summer. By clustering, the summer starts in April and ends in October. To 
completely filter out the seasonal effect, only weekdays from May to October are used. 
Furthermore, we also found that the daily patterns on Monday and Friday could be very 
different from those on other weekdays. Hence, we focus on all Tuesdays, Wednesdays and 
Thursdays in summer, in all 79 weekdays. Next, we conduct a clustering analysis for all 79 
weekdays × 322 households = 25,438 daily profiles. Each daily profile is a vector of 72 
elements representing the electricity use of all 5-min time intervals from 12 AM to 6 AM. K = 
10 is selected by GAP statistics for the K-means algorithm. Fig. 4 plots the daily profile of 
cluster average for each of the 10 clusters, representing 10 most representative patterns. We 
denote the ten clusters as patterns 𝐴𝐴,𝐵𝐵,𝐶𝐶, … , 𝐽𝐽. The time-of-day electricity use varies quite 
substantially among those patterns.  



 
 

Fig. 4. The 10 most representative electricity usage patterns. 
 
2.2.2. Feature encoding 
 
We construct features on each day that are derived from the clustering results of daily profiles. 
Thus, each household or user on each day will be assigned to a typical pattern (cluster). 
Features that are related to traffic congestion can be both aggregate or disaggregate. Aggregate 
features are highly compressed. They are a vector of 𝐾𝐾 − 1 elements for each daily profile. 
Each element is the ratio of households/users that are under a pattern on that day. The element 
of one last pattern can be dropped from the vector as a result of redundancy. Those aggregate 
features would offer effective prediction if the assumption holds that all households/users are 
homogeneous under the same electricity use pattern.  
 
If this is not reasonable, then disaggregate features allow us to examine household/user-level 
behavior in full details. On each day, the electricity use pattern of a household is represented 
by a vector consisting of K−1 binary elements where an element is 1 if a pattern is followed 
and zero otherwise. The feature vector length is (𝐾𝐾 − 1) ×  𝐻𝐻, possibly exceeding the sample 
size. 

 
2.3. Model construction 
 
We assume that congestion starting time on the dth day is predicted by its expected value that 
is a linear combination of many features: 
 

𝐸𝐸(𝑦𝑦𝑑𝑑) = 𝛽𝛽𝑇𝑇𝑥𝑥𝑑𝑑 (4) 
 



where 𝑥𝑥𝑑𝑑 is a vector of p features observed on the dth day. Those features are derived from 
daily electricity profiles 𝑒𝑒𝑑𝑑. The commonly used ordinary least square (OLS) linear predictor 
is to learn the parameters 𝛽𝛽 such that: 
 

min
𝛽𝛽

||𝑦𝑦 − 𝑥𝑥𝑇𝑇𝛽𝛽||2 + 𝛼𝛼||𝛽𝛽||1 (5) 

 
where ||𝛽𝛽||1 = ∑ 𝛽𝛽𝑖𝑖𝑑𝑑

𝑖𝑖=1  denotes the L1-norm of 𝛽𝛽. The LASSO regression helps select the 
most critical features that are linearly related to the response.  

 
2.4. Results and discussion 

 
2.4.1. Examination of the relationship between electricity usage patterns and morning 
congestion 
 
This subsection highlights the correlations between aggregate features and the congestion 
starting time, which uses all 79 weekdays in regressing the predictor. Fig. 5 shows the 
coefficients and their respective p-values for all 15 linear predictors. Patterns B, C, E, F and G 
have positive effects on the congestion starting time. Patterns B, C, and E are households who 
steadily use electricity after midnight with an oscillating and declining usage over time. It is 
no surprise that more households in those patterns on a particular day lead to a later congestion 
starting time next time. We speculate that those households with those types of after-midnight 
activities are likely commuters. They are likely to commute later if under those patterns than 
if under patterns A, I and J. Of those positively correlated patterns, B, C, and E have higher 
positive effects than F and G, and the effects on F and G are not statistically significant. F and 
G are households who use electricity intensively at around 1:00–1:30 am, but the usage is very 
low at all other times. This type of midnight activities may not imply commuters, or not 
necessarily related to their travel activities.  
 

 



 
Fig. 5. Regression results using aggregated features for predicting congestion starting time. 

Patterns A, D, I and J have negative effects on the congestion starting time, which are statistically 
significant for most TMCs. The effect by pattern D is slightly milder. Patterns A, I and J each 
represents a group of households whose electricity use increases from 2 am and then declines 
before 6 am with possibly a particular work schedule in the early morning, consistent with the 
speculation that users get up in early morning and leave by 6 am for work. Pattern D shows the 
electricity use is relatively high and generally stable from midnight to 6 am. However, it still 
implies a slight decline after midnight and a slight increase after 5 am. It is intuitive that more 
households under those four patterns imply an earlier departure time from home, thus possibly 
leading an earlier congestion starting time. 
 
2.4.2. Predictor performances with aggregate and disaggregate feature encodings 
 
When assessing and comparing the overall performance of a predictor denoted by Root Mean 
Square Error   (RMSE) and Mean Average Error (MAE), we use a two-level cross validation. All 
79 weekdays are first divided into 3 folds (namely, 3-fold cross validation at the upper level). At 
each time, two of the three folds are picked out as the training data set, leaving the other fold as 
the testing data set. We apply 4-fold cross validation (namely the lower level cross validation) to 
the training data set to learn all parameters for the predictor (such as coefficients of features, and 
α of the LASSO model). Then the calibrated predictor is used to compute the RMSE or MAE on 
the testing data. The final RMSE or MAE are averaged from the upper level 3-fold cross validation. 
Fig. 6 shows the cross-validation performances of our LASSO predictors with electricity usage 
features (aggregate/disaggregate encodings), compared with two benchmark models: 
autoregressive–moving-average (ARMA) models using the same length of real-time traffic data 
and historical mean models that only use historical traffic data.  
 
For predicting morning congestion starting time (CST), as shown in Fig. 6(a) and (b), using 
disaggregate features of electricity-use data offers a more accurate prediction than using aggregate 
features for 9 out of 15 TMCs. This is no surprise since it carries more detailed information 
regarding usage patterns. In most TMCs, using electricity data is far more advantageous than using 
traffic data only. This result implies that electricity usage pattern is spatially and temporally 
correlated with highway usage, and it is possible to predict morning congestion from electricity 
use during midnight and early morning. Clearly the electricity use of those households does not 
bring in useful information to predict traffic in those two TMCs, comparing to use historical 
average. For predicting morning congestion durations, as shown in Fig. 6(c) and (d), the predictors 
using aggregate features and disaggregate features, and historical means are used again. In addition, 
we create a new predictor that uses the predicted CST (from aggregated features) in addition to 
aggregate features. Generally, the predictor with disaggregated features has reasonable results and 
considerably outperforms other predictors in all TMCs except TMC 3. While in most TMCs using 
aggregate features with and without CST information are very close to the predictor using the 
historical mean. It seems that neither the aggregate features nor the CST carries useful information 
to explain the morning congestion duration.  
 



Comparing to predicting CST, predicting the duration has higher RMSE. Clearly the congestion 
duration is more challenging to predict, given the households information from midnight to 6 am. 
This is not surprising. The electricity use data from midnight to 6 am can better explain the spatial 
and temporal distribution of travelers in the early morning than in the later morning. Congestion 
duration is likely to be affected by many factors other than the starting time of using highways, 
such as how long travel demand peaks and higher probability of incidents during morning 
congestion. Those add more complications to the prediction of duration than CST.  
 
 

  
   

 
Fig. 6(a) RMSE for predicting congestion starting 

time. 
Fig. 6(b) MAE for predicting congestion starting time. 

  

  
 

  
 

Fig. 6(c) RMSE for predicting congestion duration. Fig. 6(d) MAE for predicting congestion duration. 
 

3. Using geocoded social media data to improve morning 
congestion prediction 

 
In this section, we predict the traffic congestion, including congestion starting time (CST𝑖𝑖𝑑𝑑), 
congestion duration (CD𝑖𝑖

𝑑𝑑) and congestion occurrence (𝑂𝑂𝑖𝑖𝑑𝑑) on a particular road segment in the 
network some time during morning periods, which are defined as from 5:00 AM to 10:59 AM, 
using traffic, social media and auxiliary features (e.g. weather, day-of-week, holiday) available 
until early morning, which is defined as before 5:00 AM on that day. 



 
3.1. Data sources 
 
This section uses probe-sourced traffic speed data from INRIX Traffic, tweet messages 
collected from the free Twitter Streaming and User Timeline API services and weather 
information scraped from Weather Underground for one year from January to December in 
2014. The INRIX traffic data were reported every 5 minutes for 1,908 road segments 
georeferenced by Traffic Message Channel (TMC) code in Allegheny County, Pennsylvania, 
United States, as shown in Fig. 7(a). Several major US highways including I-376, I-279, I-597, 
PA-28, etc. are covered in the dataset. Each data record includes TMC code, time stamp, 
observed speed (mph), average speed (mph), reference speed (mph) and two parameters for 
the confidence of the speed, namely confidence score and confidence value. In this study, we 
only use TMC code, timestamps and observed speed fields of INRIX dataset. 
 
We construct our Twitter streaming dataset by collecting all geo-coded tweets posted within 
the bounding box (-80.20, 40.29; -79.80, 40.62). 1,782,636 tweets from January 1, 2014 to 
December 31, 2014 in Allegheny County were collected, of which 672,527 (37.72%) tweets 
posted by 43,670 users are tagged with accurate locations. The Twitter data include date/time, 
text, user ID, language, latitude, longitude, user profile location, etc. In addition, 2014 US 
Census Tract Cartographic Boundary Shapefiles and Pittsburgh Zoning Map are used to 
spatially join geocoded tweets with the neighborhood and land-use information. The coverage 
of collected tweets is shown in Fig. 7(b). Weather Underground data were reported every one 
hour during 2014, with each report including time stamps, temperature, dew point, humidity, 
wind speed, precipitation, visibility, etc. Weekday/weekend and holiday information are from 
US Federal Holiday Calendar. 
 

 

 
Fig. 7(a) TMC road segments used in this study. Fig. 7(b) Traffic and social media data coverage in 

Allegheny County. 
 



 
3.2. Feature extraction 

 
The workflow of our method consists of four steps: (1) the first identifies typical morning 
congestion patterns in urban transportation networks; (2) the second processes social media 
data and extracts spatiotemporal social media features; (3) the third examines the relationship 
between morning congestion patterns and social media features through regression analysis, 
and (4) the last makes use of such relationships to construct a predictive model for forecasting 
morning congestion in the network. 
 
3.2.1. Characterization of morning road congestion  
 
As illustrated in Fig. 8, this step first transforms raw INRIX traffic speed data into congestion 
rates, and computes congestion status, congestion starting time and duration for road segments 
during morning periods. Then, congested road segments with at least two congestion 
occurrences are selected. We ignore segments with only one congestion as they are most likely 
to be caused by unexpected traffic incidents.  

 
Fig. 8. Characterization of morning road congestion. 



 
Clustering analysis using K-means is then conducted to identify typical daily morning 
congestion patterns for each road in the network. A daily road congestion profile for road R is 
a vector of 𝑁𝑁 × 𝐶𝐶 dimensions, where 𝑁𝑁 denotes the number of congested segments on that 
road and 𝐶𝐶 is the sampling points during morning periods. Optimal cluster size 𝐾𝐾 is selected 
by GAP statistics. 
 
3.2.2. Social media processing 
 
This section presents a social media processing workflow to reduce data noise and augment 
the dataset by user timeline tweets. The flowchart is shown in Fig. 9. User timeline tweets are 
all tweet messages posted by a user in the past, which can be downloaded through Twitter User 
Timeline API. Timeline tweets do not contain accurate posting coordinates but the amount is 
12.8 times larger on average for users in our dataset. By assuming that local residents stay at 
their homes every night, non-geocoded tweets can be used to track how people starting trips 
from 160 that area are active on the previous day and early morning. The difficulty lies in 
filtering local residents from a large number of noisy users (e.g. visitors, etc.), and to infer 
Twitter users’ home locations. 
 

 
Fig. 9. Social media processing flowchart. 

 
3.2.2.1. Resident detection and home location inference 
 
We make use of the self-reported account profile locations of Twitter users to identify local 
residents. For users who posted geocoded tweets within the bounding box, we select those who 
clearly declare their residence with place names in Allegheny County. A resident classifier is 
built using regular expressions that match local city names and nicknames (e.g. pittsburgh, pgh, 
da burgh, steel city, etc.), sports teams (steeler, etc.), zip codes (e.g. 15213, etc.), area code 
(e.g. 412), universities (e.g. cmu, chatham, etc.), townships, neighborhoods (e.g. shadyside, 
oakland, etc.) and coordinates within bounding box (e.g. 40.429, -79.932, etc.). Manual 
inspections are later conducted to check if local place names are matched. 
 
A density-based algorithm called DBSCAN (Density-Based Spatial Clustering of Applications 
with Noise is applied to first find users' frequently-visited places using tweet check-in 
coordinates. A rule-based method is later applied to infer user home locations using place land-



use variables, check-in ratios, night-time activities and home-related tweet features. As 
illustrated in Fig. 10(a).  
 
The last step computes the exact coordinates for user home locations. As shown in Fig. 10(b), 
check-in points of an identified posting coordinate cluster may spread across multiple land use 
areas. Four-level weights are used to approximate the probability of a point in that area being 
a residential place, which include:  Residence: 1.0; Mixed-use: 0.5; Education, Downtown: 0.2; 
Industry, Amenity: 0.0. Coordinates in an identified home cluster are then averaged by land-
use weights to compute exact home locations. At last, 4,306 local residents in Allegheny 
County with home locations are identified. Home locations by census tract are visualized in 
Fig. 10(c). 

 

 

 
Fig. 10 (a). DBSCAN clustering process. Fig. 10 (b). Home clusters and weighted average 

inference.  

 
Fig. 10 (c). Visualization of identified home locations by census tract in Allegheny County. 

 
 



3.2.2.2. User tweeting activity and sentiment feature encoding 
 
We hypothesize that people’s daily activities (e.g. asleep/awake time, night activities, etc.) in 
early morning and on last day have correlations with road congestion in morning peak hours. 
We use user tweeting activities to probe people’s activities. A user i’s activity profile on day d 
is characterized by a N-dimension vector Ai

d = [ai0d , ai1d , … , aiNd ] , where aitd  is the user 
i tweeting counts during time interval t − 1 and t of day d. Note that a day starts from the 
morning of day d (e.g. 5 AM) to the early morning of day d + 1. we aggregate user activities 
by home census tract to extract normalized spatiotemporal feature vectors. PActcd describes 
how people starting trips from census c on day d are active on previous day d − 1 and on the 
early morning of d.  
 
Abnormal tweeting trends by day are used to reflect urban activity trend. We encode the total 
tweet counts on day 𝑑𝑑 as a feature 𝐴𝐴𝐴𝐴𝑡𝑡𝑑𝑑 . The tweet sentiment analysis a bidirectional-LSTM 
neural network with soft attention. We fit the model with Stanford’s Sentiment140 dataset, 
which has 1,600,000 labeled tweets for positive or negative sentiment. With 220 a hold-out 
validation set of 80,000 tweets, the model is trained with the remaining samples using the 
early-stopping criterion, which stops the training iterations when accuracy observed on 
validation set starts to decrease. The final model achieved an accuracy of 86.7% for classifying 
tweet sentiment on the validation set. We use the last sigmoid layer output, i.e, the probability 
of the tweet being positive ppos, to compute the sentiment score for our study. The sentiment 
score of a tweet is defined as 2ppos − 1. The score ranges from -1 to +1, where -1 indicates 
very negative 225 while +1 indicates very positive sentiments. The daily urban sentiment 
𝑆𝑆𝑒𝑒𝑛𝑛𝑡𝑡𝑑𝑑  is the average of all tweet sentiment on the day d.  
 
3.2.2.2. Auxiliary feature encoding 
 
Besides social media features, weather, weekday/weekend, month-of-year, and holiday 
information are used as control variables. Weather variables are apparent temperature 𝐶𝐶𝐴𝐴𝑇𝑇𝑑𝑑  and 
precipitation status 𝑃𝑃𝑑𝑑 observed on the early morning of the day before congestion prediction 
time. Apparent temperature is computed by combinations of Heat Index (HI), which measures 
“how hot it really feels when relative humidity is factored in with the actual air temperature”, 
and Wind Chill Temperature (WC), which measures “the lowering of body temperature due to 
the passing-flow of lower-temperature air”. HI and WC are calculated using Meteorological 
Calculator provided on National Weather Service. We apply these two measures as apparent 
temperatures if their conditions can be met. Otherwise, we use air temperature directly. 
Precipitation status is a binary variable indicating if the pavement condition is wet. 
Weekend/weekday variable 𝑊𝑊𝑑𝑑 .indicates if day 𝑑𝑑 is during weekends and holiday variable 
𝐻𝐻𝑑𝑑indicates if day 𝑑𝑑 is an official national holiday. Finally, explanatory variable vector 𝑥𝑥𝑑𝑑 can 
be defined as the concatenation vector [PActcd,𝐴𝐴𝐴𝐴𝑡𝑡𝑑𝑑 , 𝑆𝑆𝑒𝑒𝑛𝑛𝑡𝑡𝑑𝑑 ,𝑊𝑊𝑑𝑑 ,𝐻𝐻𝑑𝑑 ]. We normalize each 
variable to have “zero mean and unit variance.” 
 
3.3. Model construction 

 



Two kinds of models are constructed for this study. The first is an examination model to 
explain how social media precursors affect the morning road congestion patterns. We use an 
ordered logit regression model to correlate congestion cluster index with social media features, 
while controlling the effects of weather, weekday/weekend, month-of-year, and holiday 
information. The second is a segment-based stacked linear predictors (logistic regression + 
LASSO) for predicting the congestion occurrence, congestion starting time and congestion 
duration on each day. 
 
3.3.1. Examination model 
 
Because of traffic propagation effects, the identified road congestion clusters generally show 
ordered spatiotemporal patterns. Ordered logit model is performed to evaluate the impacts of 
social media on morning road congestion scales, while controlling for the effects of weather, 
weekday/weekend, month and holiday effects. 𝑌𝑌𝑑𝑑 is an ordered categorical variable indicating 
the congestion cluster observed on day 𝑑𝑑. 𝑥𝑥𝑑𝑑 is a vector of explanatory variables observed on 
previous day 𝑑𝑑 − 1 and early morning of day 𝑑𝑑 before congestion prediction time. 𝜃𝜃𝑐𝑐 is the 
learned thresholds for classifying cluster level 𝐴𝐴 and 𝛽𝛽𝑇𝑇 are the variable weights. 
 

𝑃𝑃(𝑌𝑌𝑑𝑑 ≤ 𝐴𝐴) = 𝜎𝜎(𝜃𝜃𝑐𝑐 − 𝛽𝛽𝑇𝑇𝑥𝑥𝑑𝑑 + 𝜖𝜖𝑑𝑑) (6) 
 

Due to high dimensions and co-linearity of the extracted features, recursive feature elimination 
(RFE) and L2-norm regularization are applied on model coefficients to remove irrelevant 
spatiotemporal variables and to learn stable relationships. If a road has non-ordinal congestion 
clusters, we split its road segments until each sub-road only has ordered congestion patterns. 
 
3.3.2. Prediction model 
 
We then build l1-regularized linear congestion predictors for each segment on the road, with 
the learned 𝛽𝛽𝑇𝑇 in examination model added to each predictor feature set to push it to select 
features that explain within-cluster variances. As shown in Fig. 11, predictors for each road 
segment form a pipeline that consists of three linear models: binary logistic regression 
classifier is trained to predict if congestion 𝑂𝑂𝑖𝑖𝑑𝑑 will occur on the segment (Eq. 7); Lasso1 (Eq. 
8) and Lasso2 (Eq. 9) are both linear regressors trained on days when congestion occurs, to 
respectively predict congestion starting time and duration. During the prediction phase, logistic 
regression is first used to classify congested days. Only if the segment is predicted to be 
congested, Lasso1 and Lasso2 will be performed to predict congestion starting time 𝐶𝐶𝑆𝑆𝐶𝐶𝑖𝑖𝑑𝑑 and 
duration 𝐶𝐶𝐶𝐶𝑖𝑖𝑑𝑑. Otherwise, the congestion starting time is regarded as being indefinitely late, 
thus predicted as the ending point of defined morning periods and congestion duration is 0. 
 

min
𝛽𝛽𝑚𝑚

−� log𝑃𝑃(𝐶𝐶𝑖𝑖𝑑𝑑|𝑥𝑥𝑑𝑑;𝛽𝛽𝑖𝑖,𝛽𝛽)
𝑑𝑑

+ 𝛼𝛼𝑖𝑖||𝛽𝛽𝑖𝑖||1 (7) 

min
𝑤𝑤𝑚𝑚

||𝐶𝐶𝑆𝑆𝐶𝐶𝑖𝑖 − 𝑤𝑤𝑖𝑖
𝑇𝑇[𝑥𝑥𝑑𝑑 ,𝛽𝛽𝑇𝑇𝑥𝑥𝑑𝑑]||2 + 𝛼𝛼𝑖𝑖||𝑤𝑤𝑖𝑖||1 (8) 

min
𝛾𝛾𝑚𝑚

||𝐶𝐶𝑆𝑆𝐶𝐶𝑖𝑖 − 𝛾𝛾𝑖𝑖𝑇𝑇[𝑥𝑥𝑑𝑑,𝛽𝛽𝑇𝑇𝑥𝑥𝑑𝑑]||2 + 𝛼𝛼𝑖𝑖||𝛾𝛾𝑖𝑖||1 (9) 



 
 

 
Fig. 11. The proposed predictive model in this research. 

 
3.4. Results and discussion 
 
3.4.1. Examination of relationship between social media and morning congestion patterns 
 
3.4.1.1. Cluster analysis 
 
K-means clustering is performed for all road congestion profiles to find spatiotemporal 
congestion patterns of that road. Most roads have ordered congestion clusters that reflect the 
overall congestion scales when K reaches the optimal GAP statistics, except for PA-28S, which 
has two groups of clusters representing different congestion locations. As shown in Fig. 12, 
we split the road into two sub-roads by the transition segment and perform clustering on two 
sub-roads separately to find ordinal clusters. We manually order the clusters according to 
congestion coverage and duration. The ordered clusters are summarized in Fig. 12. The 
congestion propagation dynamics have been observed in the results, where the early congestion 
of downstream segments can cause congestion of upstream segments with time lags.  
 



 
Fig. 12. Morning congestion clustering results. 

 
3.4.2.1. Regression results 
 
Ordered logistic regression with l2 regularity 𝛼𝛼 = 100  is performed to associate ordered 
congestion cluster index of the road with social media features and control variables. To deal 
with the issue of imbalanced class, the data sets were over-sampled from the 2014 data. Over-
sampling over-selects the minority class in order to achieve balanced training. We define five 
periods for visualization: last morning (LM: 06:00AM - 09:59AM), last daytime (LA: 
10:00AM -05:59 PM), last evening (LE: 06:00PM - 11:59PM), night (NT: 0:00AM - 03:59AM) 
and early morning (EM: 04:00AM - 05:59AM). User tweeting activities in four of the five 
periods, including LM, LE, NT, and EM, are used as features to account for congestion scales. 
The model coefficients are shown in Fig. 13 with variables ordered from left to right by the 
time of day. The resulting relationships are surprisingly simple and powerful. Generally, we 



discover that the earlier people go to sleep, the more congested the roads will be in the next 
morning. The early-sleeping patterns are represented by high tweeting activities in last evening 
(LE) together with low tweeting activities at night (NT), which results in the early activities 
drop in selected spatial areas. In addition, people's tweeting activities in the early morning (EM) 
is positively associated with morning congestion scales, which is intuitive as the earlier people 
get up, the high chances they will commute and contribute to morning congestion. People's 
activities in last morning (LM) periods are also positively-correlated but the relationship is not 
consistently observed on PA-28S-2 and I-376S. It is expected that weekends, holidays 
variables are negatively correlated with morning congestion scales as the morning commuting 
demands are decreased on these days. Weather variables, including precipitation status and 
apparent temperature, are positively correlated with congestion scales. However, the effects of 
overall tweeting activities of the last day and sentiment are not significant. 
 
3.4.2. Prediction performances 
 
With forecasting horizons set as six hours, we use tweet or traffic data from the last day until 
5 AM to predict congestion between 5:00 AM and 10:59 AM in the morning. The prediction 
errors by segment are shown in Fig. 14. The results suggest that our proposed method 
(Logit+Lasso+Olm) outperforms other benchmarks in terms of predictions for all four 
congestion measurements. Note that the Root Mean Square Error (RMSE) of congestion start 
time and durations are a lot higher than Mean Absolute Error (MAE) because the prediction 
errors on days when congestion occurrences are incorrectly predicted are much higher than 
normal errors and RMSE tends to enlarge the effects of big errors. Therefore, MAE is 
considered as a more reasonable metric to reflect congestion starting time or duration errors in 
reality. Our method is capable of forecasting morning congestion occurrences with high 
precision and recall (F1=0.83), with congestion starting time predicted with an average error 
of 21 min and duration predicted with an average error of 10 min across all segments. The 
predictions accuracy of binary congestion status time-series is relatively low (F1=0.69) 
because our method is unable to predict very short congestion (<10min) and multi-period 
congestion. However, our method still outperforms other benchmarks in terms of this 
congestion measurement.  
 
When further inspecting prediction errors by segment in Fig. 14. we observe that the prediction 
performances of different methods are correlated, which is reasonable because if congestion 
on some road segments has low variances, all prediction methods are supposed to have high 
prediction performances.  
 



 
Fig. 13. Regression coefficients  



 

 
Fig. 14. Predictor performances 

 
The performances of all six methods can be categorized into 3 groups. The first group includes 
“Logit+Lasso+Olm” and “Logit+Lasso”. These two methods both use social media features 
and build models for each segment. Their performances are generally the best among all 
methods. “Logit+Lasso+Olm” outperforms “Logit+Lasso” on some segments in the middle of 
roads. The second group is “Olm+Kernel” method. This method performs very unstable among 
the segments, with the prediction errors on some segments in the middle of the road even lower 
than “Logit+Lasso+Olm”, but also with errors of segments on both ends of the road higher 
than the worse method “AR”. In general, the model performance is in the middle of the three 
groups and has a better ability to predict congestion occurrences and binary congestion state 
time-series, compared with its other predictions. The third group contains historical average 
methods (“HM”, “HM-M”) and autoregressive methods “AR-MIMO”. Not surprisingly, these 
three methods perform badly in terms of all congestion measures because historical methods 
can't capture day-to-day variances and autoregressive methods can't extract useful traffic 
dynamics from early morning traffic. Autoregressive method “AR-MIMO” is the worst among 
all methods, with low chances of correctly predicting congestion occurrence (F1=0.148) and 
high errors of predicting congestion starting time (MAE=1.282 h) and duration (MAE=0.636 



h). The results make it an inappropriate method for predicting morning congestion with long 
forecasting horizons, such as using data before 5 AM.  
 
In summary, the methods that make use of social media data perform better than methods that 
make use of traffic data for morning congestion predictions. The methods that build models 
for each segment outperforms methods that build models for the whole road. 

 
4. Conclusions 
 
This project proposes a general framework to explore the spatial and temporal correlation 
among usage patterns of energy systems and social media platform with roadway systems, and 
make use of such relationships to increase the forecasting accuracy and horizons of morning 
congestion predictions, which has huge practical values for helping travels’ plan travel choices 
and supporting active traffic control.  
 
For using energy usage data for morning congestion prediction, we propose a methodology 
along with data analytics for the City of Austin to predict morning congestion starting time and 
duration using the time-of-day electricity use data from 322 anonymous households with no 
spatial location information. The results are very compelling and encouraging. We show that 
using sampled household-level electricity data from midnight to early morning, even from 
midnight to 2 am, can reliably predict congestion starting time (CST) of many highway 
segments that are otherwise hard to predict using only real-time travel time data (through time 
series or the historical mean).  
 
For using social media data for morning congestion prediction, the resulting relationships are 
surprisingly simple and powerful. Generally, we discover that the earlier people go to sleep, 
which can be sensed by social media platforms, the more congested roads will be in the next 
morning. The early-sleeping patterns are represented by high tweeting activities last evening 
together with low tweeting activities at night, which results in the early activities drop in 
selected spatial areas. In addition, people's tweeting activities in early morning are positively 
associated with morning congestion scales, which is intuitive as the earlier people get up, the 
high chances they will commute and contribute to morning congestion. These relationships are 
powerful because most tweeting activity features (last evening, night, etc.) are readily available 
many hours ahead of the next morning and therefore can be used to improve long-term morning 
congestion predictions. A predictive pipeline consisting of an ordered logit model, a logistic 
regression model, and two Lasso models have been presented to predict multiple congestion 
measurements including morning congestion occurrences, congestion starting time and 
duration, and binary congestion status time series. The results show that our method is capable 
of forecasting morning congestion occurrences with high precision and recall (F1=0.83), with 
congestion starting time predicted with an average error of 21 min and duration predicted with 
an average error of 10 min across all segments. 

 
This project demonstrates the potential of cross-system prediction and control as a proof of 
concept, which hopefully will open the door for future research along this arena. As a first 
attempt, this project explores the relationship between energy system and social media 
platform usage and highway system usage, and proposes a general data analytics and prediction 



framework that can potentially work for any pair of cyber or physical systems. Transportation 
system use may be revealed partially ahead of time by monitoring systems other than the 
energy system and social media, such as water/sewer system. We plan to future extend our 
framework to include those systems in the near future.  
 
Note: this project is also partially supported by an NSF grant. The NSF grant focuses on 
developing a general framework for mining multi-source data to predict traffic in advance, 
while this project focuses on real-world technology deployment test in both Austin and 
Pittsburgh. 
 


