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1.	Overview	
	
This	project	has	taken	significant	steps	toward	the	development	and	demonstration	
of	a	more	effective	approach	to	transit	signal	priority	(TSP)	than	currently	available	
systems,	through	integration	of	real-time	adaptive	signal	control	technology	with	
DSRC-based	detection	of	buses	and	communication	of	status	information.	Our	
approach	has	been	to	extend	the	SURTRAC adaptive	signal	control	system	(in	
particular,	its	core	intersection	scheduling	procedure)	to	achieve	TSP	objectives	
while	at	the	same	time	minimizing	the	disruptive	effects	to	overall	traffic	flow	
efficiency.	Recent	work	with	SURTRAC	has	produced	an	intersection	scheduling	
procedure	that	inputs	weights	reflective	of	the	relative	priority	of	different	types	of	
vehicles	and	pedestrians,	and	uses	these	weights	to	generate	signal	timing	plans	
that	minimize	the	cumulative	weighted	delay	of	currently	perceived	incoming	traffic	
flows.	Taking	this	procedure	as	a	starting	point,	the	Phase	1	project	has	investigated	
mechanisms	for	generating	and	incorporating	knowledge	of	expected	bus	stop	dwell	
times	into	SURTRAC’s	aggregate	representation	of	traffic	inflows,	to	more	
accurately	reflect	bus	arrival	times	at	the	intersection	(as	well	as	the	arrival	times	of	
passenger	vehicles	that	are	likely	to	be	blocked	during	dwell	time	at	the	bus	stop).		
	
One	principal	research	accomplishment	has	been	the	development	of	a	statistical	
method	for	generating	bus	stop	dwell	time	distributions	that	enable	highly	
predictable	real-time	predictions	of	dwell	times.	Specifically,	a	hierarchical	Bayesian	
model	was	defined	to	provide	a	method	for	predicting	dwell	times	with	small	error	
thresholds	with	low	quantities	of	data	samples.	Using	two	years	of	bus	stop	dwell	
time	data	provided	by	the	Port	Authority	of	Allegheny	County	for	two	major	Port	
Authority	bus	routes	that	run	through	the	SURTRAC	controlled	corridors	in	the	
Pittsburgh	East	End	as	test	data,	the	approach	has	been	shown	to	produce	
predictions	within	+/–	5	seconds	as	high	as	80%	of	the	time	across	several	
intersections,	and	to	significantly	outperform	a	classical	linear	regression	approach.	
	
A	second	result	has	been	demonstration	of	the	viability	of	installing	a	DSRC	On	
Board	Unit	(OBU).	Working	together	with	personnel	at	the	Port	Authority’s	East	
Liberty	maintenance	facility,	an	initial	Port	Authority	bus	was	outfitted	with	a	DSRC	
OBU,	and	successfully	tracked	through	the	SURTRAC connected	vehicle	test	bed	
through	receipt	of	Basic	Safety	Message	(BSM)	broadcast	from	the	bus’s	OBU.	The	
Port	Authority	has	subsequently	agreed	to	acquire	and	outfit	~50	buses	that	move	
through	these	same	corridors,	and	in	Phase	2	of	the	project	the	goal	is	to	
demonstrate	in	the	field,	improved	traffic	flow	efficiency	through	integration	of	both	
Phase	1	technology	results.	As	a	first	step	in	Phase	2,	real-time	DSRC	BSM	location	
information	will	be	combined	with	the	use	of	generated	dwell	time	distribution	
models	to	more	accurately	predict	bus	arrival	times	at	the	intersection.	As	a	second	
step,	the	DSRC	OBU	will	be	integrated	with	the	bus’s	onboard	computer,	and	the	
additional	benefit	of	using	other	real-time	bus	status	information,	including	such	
factors	as	bus	schedule	status	(ahead	or	behind),	bus	occupancy,	and	bus	door	
status	(open	or	closed),	will	be	analyzed.	



The	remainder	of	this	report	is	organized	as	follows.	In	Section	2,	the	hierarchical	
Bayesian	model	approach	developed	for	generating	predictable	bus	dwell	time	
models	for	specific	bus	stops	is	summarized,	and	experimental	results	obtained	with	
historical	data	provided	by	the	Port	Authority	are	summarized.	In	Section	3,	an	
initial	experiment	demonstrating	the	ability	instrument	a	Port	Authority	bus	with	a	
DSRC	OBU	and	track	its	progress	through	the	SURTRAC connected	vehicle	test	bed	
is	described.	In	Section	4,	major	accomplishments	and	conclusions	of	the	Phase	1	
project	are	summarized	and	future	work	is	described.	

2.	Modeling	Bus	Stop	Dwell	Times	
The	presence	of	transit	vehicles	stopping	on	urban	streets	often	restricts	or	blocks	
other	traffic	on	the	road	depending	on	stop	locations,	resulting	in	increased	overall	
wait	times	and	delays	throughout	the	system.	As	a	result,	unlike	other	vehicles,	
transit	vehicle	trajectories	are	rarely	well	integrated	into	conventional	signal	
coordination	plans.	In	principle,	the	trajectory	of	a	transit	vehicle	can	be	defined	as	
the	sum	of	stop-to-stop	link	travel	times	and	the	time	the	transit	vehicle	dwells	at	
stops.	It	is	widely	accepted	that	the	dwell	times	at	stops	are	a	major	source	of	the	
variability	in	the	stop-to-stop	travel	times.	Therefore,	the	ability	to	accurately	
predict	dwell	times	has	major	value	in	predicting	the	stop-to-stop	travel	time	
distributions.		

One	main	goal	of	the	first	phase	of	the	project	has	been	to	create	defensible	dwell	
time	predictions	using	small	data	sample	sizes,	specifically	demonstrating	that	
Bayesian	inference	can	be	employed	to	reliably	estimate	stop	dwell	times	with	just	a	
few	data	samples.	The	efficacy	of	the	Bayesian	model	was	evaluated	on	data	from	
October	2012	and	the	results	are	benchmarked	against	those	obtained	from	a	linear	
regression	model,	which	is	trained	at	each	bus	stop	on	September	2012	data.	In	the	
following	subsections,	we	present	details	on	the	Bayesian	model	and	summarize	the	
experimental	results.		

2.1	Model	Overview	
Constructing	a	predictive	bus	dwell	time	distribution	model	involves	three	sub-
tasks:	1)	choosing	the	likelihood	function	for	posterior	updates;	2)	choosing	
principal	covariates	that	influence	dwell	time	distributions;	and	3)	formalizing	a	
dwell	time	model	using	information	from	the	previous	sub-tasks.	

2.1.1	Likelihood	Function	For	Posterior	Updates		
For	this	task,	we	used	historical	data	for	choosing	a	likelihood	function.	Specifically,	
we	used	the	Port	Authority	of	Allegheny	County's	(PAAC)	Advanced	Vehicle	
Location	(AVL)	weekday	dataset.	The	data	is	chronologically	ordered,	and	empirical	
CDFs	based	on	every	fifteen	minutes	of	data	are	created.	Dwell	times	in	the	APCC	
dataset	are	rounded	to	the	nearest	second.	To	address	this,	two	different	continuous	
empirical	CDFs	are	generated	using	Gaussian,	and	Gamma	KDE	techniques.	Next,	
using	the	same	temporally	sequential	data	six	analytic	distributions	(Non-central	F,	
Burr,	Weibull,	Beta,	Log-normal,	and	Fisk	or	Log-logistic)	are	generated.	Max-



deviation	scores	are	computed	between	each	analytic	distribution	fit	and	each	of	the	
two	empirical	distributions.	Based	on	MDT	scores,	we	chose	the	Log-logistic	(Fisk)	
distribution	as	the	likelihood	for	the	posterior	updates.	

2.1.2	Covariates	For	Dwell	Times		
In	order	to	develop	a	dwell	time	model	with	covariates,	several	relationships	were	
explored	between	covariate	data	and	dwell	time,	such	as	the	number	of	onboarding	
passengers	(xon),	number	of	alighting	passengers	(xoff),	and	load	of	the	bus	(xload).	A	
clear	positive	correlation	was	found	between	first	two	covariates	and	dwell	time,	
which	were	chosen	as	covariates	in	developing	the	predictive	dwell	time	
distribution	model.	A	scatter	plot	demonstrating	the	relationship	between	the	
number	of	onboarding	passengers	and	the	dwell	time	is	presented	in	Figure	1,	
Figure	2	demonstrates	not	only	that	more	onboarding	passengers	corresponds	to	
longer	dwell	times,	but	also	that	the	variance	of	the	dwell	time	increases	as	more	
passengers	board.	

	

Fig.	1:	Scatterplot	of	#	onboardings	vs.	dwell	times	



	

Fig.	2:	Conditional	dwell	time	distributions	for	several	numbers	of	onboarding	
passengers.	Note	that	the	variance	is	larger	when	more	passengers	board.	

2.1.3	Dwell	Time	Model	With	Covariates	
The	following	describes	a	Bayesian	parametric	model	for	bus	dwell	times	using	two	
covariates	xon	and	xoff.		Based	on	the	analysis	presented	in	the	subsection	on	
choosing	the	likelihood	function,	bus	dwell	time	is	modeled	as	a	random	variable	X	
following	a	Log-Logistic	(Fisk)	distribution.	Equivalently,	bus	dwell	times	X	are	
distributed	following	the	exponential	of	the	Logistic	distribution.	Covariate	
parameters	are	introduced	by	parameterizing	the	s	parameter,	and	the	median	of	
the	Log-Logistic	distribution.	The	exponential	relationship	between	the	Logistic	and	
Log-Logistic	distributions	is	used	in	this	formulation.	This	parameterization	is	
described	below:	

X	=	exp(Y)	

Where	Y	~	Logistic	(µ,	s)	

𝜇 = ln 𝛼 = ln (𝛽!!𝑥 +  𝛽!)	

𝑠 =  1 𝜏 =  1 𝛽!!𝑥
	

𝛽! =  𝛽!!" 𝛽!
!"" !

	

𝛽! =  𝛽!!" 𝛽!
!"" !

	

𝑥 =  𝑥!" 𝑥!"" ! 	



At	any	given	time,	the	belief	of	the	two	parameters	µ	and	s	describe	current	belief	of	
bus	dwell	time	distribution.	In	a	real-time	system	with	access	to	dwell	time	
observations,	belief	of	the	parameter	distributions	is	continuously	updated	in	the	
light	of	new	data.	Bayes'	Theorem	offers	a	natural	way	to	achieve	such	an	update	
scheme.	As	only	one	observed	dwell	time	d	is	considered	during	any	Bayesian	
update,	the	likelihood	function	is	given	by	

𝐿 𝜇, 𝑠 ln 𝑑 = 𝑓(ln 𝑑 , 𝜇, 𝑠)	

Where	f		is	the	probability	density	function	of	a	Logistic	distribution.	

Before	obtaining	any	posterior	distributions	to	use	as	priors,	we	bootstrap	the	
model	using	a	Normal	prior	for	each	of	the	4	covariate	parameters:	𝛽!!",	𝛽!

!"" ,	𝛽!!",	
𝛽!
!""	and	offset	parameter	𝛽!.	Once	a	set	of	posterior	distributions	is	obtained,	the	
most	recent	posterior	distributions	are	used	as	priors	in	the	next	Bayesian	update.	
The	Metropolis	Hastings	algorithm	is	employed	to	obtain	MCMC	samples	of	the	
posterior	distributions	for	four	covariate	parameters	and	the	offset	parameter.	

To	make	a	dwell	time	prediction	for	an	approaching	bus,	we	observe	values	for	
covariates	xon,	and	xoff,	and	use	posterior	distributions	of	each	β	to	determine	the	
posterior	predictive	distribution	of	X.	

This	process	is	repeated	in	the	light	of	new	data,	using	the	most	recent	posterior	
distributions	of	each	β	as	priors	in	the	next	Bayesian	update.	The	means	of	several	
model	parameters	are	shown	in	Figures	3,	where	a	real-time	prediction	scenario	is	
simulated	on	historical	data	in	a	rolling	fashion.	



	

Fig.	3:	Means	of	model	parameters	throughout	simulation.	beta_1	corresponds	to	
beta_alpha,	beta_2	corresponds	to	beta_tau	

2.2	Model	Testing	
We	tested	the	efficacy	of	the	proposed	dwell	time	prediction	model	on	bus	dwell	
time	data	provided	by	the	Port	Authority	of	Allegheny	County	in	Pittsburgh,	
Pennsylvania	for	the	period	from	September	2012	to	August	2014.	While	the	
dataset	spans	over	two	years,	data	from	October	2012	is	used	to	test	the	Bayesian	
model.	We	compared	the	results	of	the	Bayesian	model	to	those	of	a	linear	
regression	model	for	benchmarking	purposes.	We	trained	a	linear	regression	model	
on	September	2012	and	tested	on	October	2012,	which	are	good	training	and	test	
datasets	since	it	is	widely	accepted	that	seasonal	trends	in	bus	dwell	time	
distributions	are	statistically	similar.	Therefore,	the	linear	regression	model	is	not	
really	put	to	the	test.	In	principle,	regression	equations	for	September	2012	&	
October	2012	should	look	very	similar,	suggesting	that	predictions	on	the	test	
dataset	should	be	reasonably	good.	However,	the	main	objective	of	this	analysis	is	to	
evaluate	the	robustness	of	the	proposed	framework.	In	other	words,	the	goal	is	to	
check	whether	the	Bayesian	model	is	able	to	predict	dwell	times	without	any	
training	and	how	good	those	predictions	are	compared	to	predictions	from	a	well-
trained	traditional	model.	



With	these	objectives	in	mind,	we	tested	the	robustness	of	the	Bayesian	framework	
at	twelve	different	bus	stops	in	the	East	End	region	along	Centre	Avenue	corridor	in	
Pittsburgh,	PA.	

2.2.1	Cumulative	density	functions	of	dwell	times	
Analyzing	cumulative	density	functions	(CDFs)	of	dwell	times	provides	useful	
insights	into	the	reliability	(presence	or	absence	of	variance)	of	these	distributions.	
From	the	standpoint	of	stochastic	dominance,	the	distributions	with	curves	furthest	
to	the	left	have	smaller	variance	in	dwell	time	distributions	and	hence	are	more	
reliable.	

	

Fig.	4:	Cumulative	density	functions	of	dwell	times	

Figure	4	presents	dwell	time	CDFs	for	test	bus	stops	of	interest.	It	can	be	seen	that	
dwell	time	distributions	have	the	largest	variance	at	Negley	Ave	at	Centre	Ave	(CDF	
in	red),	followed	by	Centre	Ave	at	Aiken	Ave	(blue),	Centre	Ave	at	Morewood	Ave	
(cyan),	Centre	Ave	at	Craig	St	NS	(peach),	and	Centre	Ave	at	Millvale	(light	grey).	
This	information	is	useful	because	predicting	dwell	time	distributions	at	these	
intersections	is	particularly	hard	due	to	their	highly	stochastic	nature.	

2.2.2	Model	Performance	
As	mentioned	earlier,	the	efficacy	of	the	Bayesian	model	is	evaluated	on	data	from	
October	2012	and	the	results	are	benchmarked	against	those	obtained	from	a	linear	
regression	model,	which	is	trained	at	each	bus	stop	on	September	2012	data.	The	
same	Bayesian	parametric	model	is	applied	to	each	of	the	bus	stops,	and	we	set	
Normal	priors	for	each	of	the	4	covariate	parameters	and	the	offset	parameter	𝛽!.	
Covariate	parameters	are	updated	on	an	ex	post	facto	basis,	and	dwell	time	
predictions	are	made	starting	from	the	very	first	new	data	point	onward.	



We	use	the	ability	to	predict	dwell	times	within	a	small	error	threshold	as	a	
performance	metric	to	evaluate	the	models.	The	rationale	for	choosing	small	error	
bounds	is	to	account	for	the	fact	that	these	dwell	time	values	are	used	by	planning	
algorithms	in	real-time	systems,	so	larger	errors	will	generate	schedules	that	are	far	
from	optimal.	For	this	reason,	the	fraction	of	predictions	within	error	bounds	of	[-5,	
5]	seconds	is	used	as	a	performance	metric.	Effectively,	this	fraction	represents	the	
area	under	the	error	distribution	density	function	within	these	tolerance	bounds.	
This	is	a	more	informative	metric	in	the	context	of	traffic	signal	scheduling	due	to	
the	importance	of	maximizing	the	proportion	of	very	close	predictions.	

Table	1	summarizes	performance	of	these	two	models.	As	can	be	seen,	this	table	
contains	three	sets	of	performance	comparisons:	1)	morning	peak	hour	(7:00	-	
10:00	AM);	2)	evening	peak	hour	(4:00	-	7:00	PM);	and	3)	the	entire	test	dataset.	
This	table	has	four	columns:	first	column	presents	bus	stop	location	information;	
second	column	presents	fraction	of	dwell	time	predictions	within	the	range	of	-5	
and	0	seconds;	third	and	fourth	columns	contain	similar	information	but	for	ranges	
of	[0,	5]	and	[-5,	5]	seconds	respectively.	Lastly,	each	row	contains	results	for	a	
specific	bus	stop.	

The	following	inferences	can	be	drawn	based	on	these	results:	First,	the	Bayesian	
predictive	model	performs	at	least	as	good	as	or	better	than	the	linear	regression	
model.	This	is	very	encouraging	to	see	as	it	validates	the	main	philosophy	behind	
the	development	of	this	framework,	i.e.,	to	develop	a	predictive	probabilistic	model	
for	estimating	task	durations	without	making	use	of	large	training	datasets.	Second,	
for	the	scenarios	in	which	dwell	time	distributions	are	highly	stochastic	(refer	Fig	4),	
the	Bayesian	prediction	model	significantly	outperforms	the	linear	regression	model	
(refer	to	results	for	Negley	Ave	at	Centre	Ave,	Centre	Ave	at	Aiken	Ave,	and	Centre	
Ave	at	Craig	St	NS).	Figure	5	demonstrates	this	trend	for	Negley	Ave	at	Centre	Ave	-	
the	Bayesian	model	has	a	much	higher	proportion	of	very	close	predictions	than	the	
linear	regression	error	distribution.	This	again	corroborates	the	hypothesis	of	quick	
adaptability	of	the	Bayesian	model.	Third,	in	addition	to	dwell	time	estimates,	the	
variance	or	precision	parameter	of	the	Bayesian	model	quantifies	the	uncertainty	of	
each	prediction.			

	



	

TABLE	I:	Model	Performance	Comparisons	



	

Fig.	5:	Fraction	of	absolute	prediction	error	within	a	threshold	for	our	framework	vs.	
linear	regression.	Note	that	the	Bayesian	hierarchical	model	has	a	higher	proportion	

of	small	errors.	

3.	Capturing	Real-Time	Bus	Information	
	

A	second	thrust	of	the	Phase	1	project	focused	on	demonstrating	the	feasibility	of	
receiving	real-time	location	information	from	buses	as	they	approach	intersections	
via	DSRC-based	vehicle-to-infrastructure	(V2I)	communication.	In	cooperation	with	
Port	Authority	personnel	at	the	East	Liberty	garage,	a	Locomate	Mini2	OBU	was	
installed	over	the	front	window	of	the	bus	(see	Figures	6	and	7),	and	connected	to	
an	antenna	that	was	attached	on	the	bus	exterior	right	above	the	route	sign	(Figure	
9).	The	installation	process	turned	out	to	be	quite	straightforward	and	took	under	
an	hour.		The	viability	of	this	installation	approach	was	subsequently	verified.	



	

Figure	6:	Installed	Locomate	Mini2	DSRC	OBU	(in	a	protective	casing)	

	

Figure	7:	OBU	Install	location	on	shelf	above	the	front	window.	

	

Figure	8:	OBU	antenna	location	on	the	bus	exterior	above	the	route	sign.	



To	verify	the	effectiveness	of	the	OBU	installation	strategy,	a	bus-tracking	
experiment	was	performed	using	the	Map	Application	of	the	Connected	Vehicle	
Warehouse	Tools,	a	suite	developed	under	direction	of	the	Federal	Highway	
Administration	by	the	Leidos	Corporation	for	purposes	of	consolidating	efforts	of	
FHWA-approved	connected	vehicle	test	beds.		Specifically,	the	on-board	OBU	was	
configured	to	continuously	emit	Basic	Safety	Messages	(BSMs),	and	BSM	processing	
code	was	developed	on	the	Road	Side	Equipment	(RSE)	unit	side	to	receive	the	BSM,	
and	forward	message	contents	to	the	Leidos	visualization	tool.		The	equipped	bus	
was	then	driven	through	the	Centre	Avenue	corridor	of	the	SURTRAC	connected	
vehicle	test	bed.	

The	sequence	of	screenshots	displayed	in	Figures	9-11	track	the	equipped	bus’s	
progress	moving	east	along	Centre	Avenue.	As	can	be	seen,	the	Leidos	Map	tool	
shows	the	real-time	traffic	signal	status	in	each	direction	at	each	intersection	(green,	
red	or	yellow)	as	well	as	the	real-time	status	of	equipped	vehicles	over	a	specified	
time	window.	In	the	sequence	of	screenshots	shown,	the	bus	is	the	only	equipped	
vehicle	being	monitored.	In	Figure	9,	the	bus	is	first	picked	up	while	stopped	at	the	
bus	stop	between	Cypress	and	Centre	Avenues	and	then	travels	to	the	intersection	
at	Aiken	Street.	(Within	the	equipped	vehicle	trajectory,	red	discs	indicate	that	the	
vehicle	is	stopped	or	moving	<	5	miles	per	hour;	yellow	discs	indicate	the	vehicle	is	
traveling	between	5	–	20	miles	per	hour;	and	green	indicates	that	the	vehicle	is	
traveling	>	20	per	hour.)	Figure	10,	then	shows	the	bus	moving	through	the	
intersection	of	Centre	Avenue	and	Aiken	Street,	and	then	finally	in	Figure	11,	the	bus	
is	shown	further	east	crossing	South	Graham	Street	and	heading	for	the	intersection	
at	Negley	Avenue.	Throughout	the	tracking	experiment	the	OBU	was	found	to	
function	perfectly.		

	

Figure	9:	Visualization	of	Bus	Tracking	Experiment		(1)	



	

Figure	10:	Visualization	of	Bus	Tracking	Experiment		(2)	

	

	

Figure	11:	Visualization	of	Bus	Tracking	Experiment		(3)	

	 	



4.	Conclusions		
	

In	this	project,	we	have	developed	technology	components	essential	to	the	
development	of	a	new	approach	to	transit	signal	priority	–	one	that	exploits	real-
time	adaptive	signal	control	to	better	optimize	bus	movements	within	the	context	of	
actual	surrounding	traffic	flows.	Where	as	contemporary	transit	priority	systems	
give	unconditional	priority	to	buses	to	the	detriment	of	all	other	traffic	on	the	road,	
we	advocate	an	approach	that	moves	buses	along	effectively	while	balancing	the	
demands	of	surrounding	traffic	flows.	“Requests”	from	buses	come	in	via	DSRC-
based	vehicle-to-infrastructure	(V2I)	communication,	and	all	approaching	vehicles	
are	weighted	according	to	mode	type.	To	give	active	attention	to	buses	they	can	be	
assigned	a	high	weight	relative	to	other	mode	types,	and	these	weights	will	directly	
influence	real-time	optimization	of	signal	timing	plans.	In	the	longer	term,	this	basic	
prioritization	scheme	can	be	augmented	to	incorporate	other	real-time	bus	status	
information	such	as	whether	the	bus	is	ahead	of	or	behind	schedule.	This	approach	
also	provides	a	natural	basis	for	resolving	simultaneous	competing	bus	requests	for	
priority,	which	are	typically	addressed	in	an	ad-hoc	manner	at	best	by	
contemporary	transit	priority	solutions.	

Toward	the	goal	of	integrating	real-time	time	signal	control	with	vehicle-to-
infrastructure	(V2I)	communication	to	achieve	more	effective	transit	priority	
solutions,	this	project	has	made	significant	progress.	One	major	accomplishment	has	
been	the	development	of	a	predictive	Bayesian	parametric	model	for	capturing	and	
exploiting	bus	dwell	time	distributions.	Predicting	bus	dwell	time	at	intervening	bus	
stops	is	unquestionably	the	most	challenging	aspect	of	using	real-time	information	
on	bus	location	to	predict	arrival	at	the	intersection.	The	developed	model	has	a	
couple	of	desirable	features.	First	it	can	be	shown	to	predict	with	greater	accuracy	
than	conventional	linear	regression	modeling	methodologies.	Second,	accurate	
models	can	be	constructed	from	a	small	number	of	sample	points,	in	contrast	to	
contemporary	deep	learning	approaches.	The	efficacy	of	the	developed	model	was	
tested	at	twelve	different	bus	stops	in	the	Pittsburgh	East	end,	using	two	years	of	
bus	stop	dwell	time	data	provided	by	the	Port	Authority	for	two	major	bus	routes.	
The	results	indicated	that	the	Bayesian	model	performed	at	least	as	good	and	in	
most	instances	far	better	than	a	traditional	linear	regression	model.	Furthermore,	
predictable	results	were	extractable	from	the	generated	model	after	only	20	or	so	
data	samples.	

At	the	vehicle-to-infrastructure	(V2I)	communication	level,	this	Phase	1	project	also	
demonstrated	the	ability	to	receive	DSRC	Basic	Safety	Messages	(BSMs)	from	an	
OnBourd	Unit	(OBU)	installed	on	a	Port	Authority	bus,	and	to	track	its	movement	
through	the	Pittsburgh	SURTRAC	connected	vehicle	test	bed.	

Looking	ahead	to	the	Phase	2	project,	future	work	will	first	focus	on	combining	
these	dwell	time	modeling	and	BSM	processing	capabilities	to	improve	SURTRAC’s	
internal	prediction	of	approaching	traffic	flows	and	demonstrating	the	use	of	this	



improved	prediction	to	further	boost	traffic	flow	efficiency	in	the	Pittsburgh	
SURTRAC	traffic	control	signal	network.	To	facilitate	experimentation	in	the	field,	
the	Port	Authority	has	agreed	to	outfit	buses	that	run	through	this	network	with	
OBUs.	Integration	of	installed	OBUs	will	also	be	integrated	with	the	buses	onboard	
computer	to	provide	other	real-time	bus	status	information	(e.g.,	how	full,	which	
route,	doors	open	and	doors	close	events,	behind	or	ahead	of	schedule)	and	a	
second	thread	of	future	research	will	investigate	the	added	benefit	of	incorporating	
this	information.	
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ABSTRACT 
 
In many applications, uncertainty in the durations of tasks complicates the development of plans 
and schedules. This has given rise to a range of resilient planning and scheduling techniques that 
in some way rely on probabilistic models of task durations. In this paper we consider the 
problem of using historical data to develop probabilistic task models for such planning and 
scheduling techniques. We describe a novel, Bayesian hierarchical approach for constructing 
task duration distributions from past data, and demonstrate its effectiveness in constructing 
predictive probabilistic distribution models. Unlike traditional statistical learning techniques, the 
proposed approach relies on minimal data, is inherently adaptive to time varying task duration 
distribution, and provides a rich description of confidence for decision making. These ideas are 
demonstrated using historical data provided by a local transit authority on bus dwell times at 
urban bus stops. Our results show that the task distributions generated by our approach yield 
significantly more accurate predictions than those generated by standard regression techniques. 

 
Index Terms -- Task Duration prediction, Hierarchical Bayesian Models, Intelligent Transit 
Systems, Adaptive Control. 
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INTRODUCTION 

Most practical planning and scheduling problems are complicated by the uncertainty inherent in 
the tasks that must be performed to achieve stated objectives. An attempt by a robot to pick up an 
unstable object can have multiple outcomes, only one of which achieves the desired effect and 
allows a larger plan to move forward. A vehicle traveling from a given pickup location to a given 
drop-off location may have several different routes to choose among, each of whose duration is 
variable and dependent on current traffic conditions. In the specific application that motivates the 
work to be presented in this paper, which is online generation of timing plans for signalized 
traffic intersections, the ability to reliably predict bus dwell times at near-side bus stops is crucial 
to optimizing movement of approaching traffic flows. 

To cope with uncertainty in task durations and outcomes, a range of techniques for building 
resilient plans and schedules have emerged. Some techniques have relied on knowledge of 
uncertainty limits to generate plans that retain temporal flexibility [1 – 4]. Others have exploited 
probabilistic models of task duration and outcome uncertainty to generate plans or policies that 
optimize expected behavior [5 – 9]. Still other techniques have used probability distribution 
information to predict durations within deterministic optimization procedures [10, 11]. 

The effectiveness of all of these techniques of course depends on the availability of good 
probabilistic task models. In this paper, we consider this requirement, and focus on the issue of 
acquiring such models. We propose a Bayesian hierarchical approach for constructing highly 
predictive probability models from past data. Our approach offers several advantages over 
traditional statistical learning techniques, including the ability to start making accurate 
predictions with only minimal past data, to provide robustness in stochastic and noisy systems, 
and to deliver a confidence in predictions. To demonstrate these advantages, we apply the 
approach to the above mentioned problem of constructing bus dwell time models along a given 
roadway. Using historical data provided by a local transit authority, results show that 
significantly more accurate dwell time distributions can be derived from far less data than is 
possible with standard linear regression methods. 

The remainder of the paper is organized as follows. We first describe our Bayesian hierarchical 
modeling methodology for constructing task duration models and summarize its advantages. 
Next, we apply the approach to bus dwell time data to analyze its effectiveness in producing bus 
dwell time models. We then compare the performance of our Bayesian hierarchical model to a 
more traditional statistical model. Finally, we summarize the contributions and briefly indicate 
our future research directions.  

Bayesian Hierarchical Framework 

Many state-of-the-art dynamic adaptive planning systems employ optimization models to decide 
how to allocate scarce resources among tasks for optimal performance. These systems typically 
assume that current unfinished tasks have deterministic completion times rather than taking into 
account task duration uncertainty. Then, to account for dynamic behavior, optimization models 
are re-run upon the discovery of new information to generate updated optimal plans. These 
adaptive strategies tend to be reactive rather than proactive. In principle, quantifying 
uncertainties in task durations will enable anticipatory or proactive strategies that offer more 
resilient (and more predictable) plans and schedules. 
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The goal of this research is to utilize the availability of real-time (or near real-time) covariate 
task duration data to produce more accurate task models for online planning and scheduling. In 
this context, there are several challenges. First, the environment can be highly stochastic and 
change over time, making prediction difficult due to the large variance and dynamic nature of the 
system. Second, there is often noise and outliers in the data, necessitating a robust approach that 
is not prone to overfitting. Third, the available training datasets may be small, making models 
with lots of parameters impractical. Fourth, a confidence in the prediction might be necessary, 
particularly for control decisions that must gauge the uncertainty of the model. Fifth, the 
implementation of the model in real-time systems should be computationally efficient. Finally, 
being able to interpret the model and understand the structure of interactions of the variables 
might be an important requirement. In the following sub-sections, we introduce a Bayesian 
hierarchical framework that meets these requirements. 

Key Concepts of the Framework 

Central to the framework is the concept of a rolling Bayesian update scheme. Instead of learning 
a model from a training dataset, or using historical data from multiple qualitatively similar time 
intervals, we make predictions using a small set of continually updated model parameter 
distributions. A fundamental component of the proposed framework, then, involves the use of an 
appropriate analytical statistical model that is determined offline and subsequently refined 
online. Such a scheme has several advantages over feature-engineered solutions that rely on 
subsets of historical data at any given time. In many real-world contexts, task duration 
constitutes a highly stochastic non-stationary process. Consequently, finding informative 
historical data for any point in time is a difficult and noise-prone endeavor, yielding little 
valuable signal for the comparatively complex system design. In contrast, high correlation 
between task duration model parameters exists between short intervals. As a result, there is 
significant value in maintaining real-time beliefs of a predictive model and updating continually 
in the light of new data. This results in a lightweight framework that naturally adapts to 
underlying non-stationary stochastic process, quickly improves with more observations, and 
easily generalizes to various task duration prediction scenarios. 

A second key concept of the framework is in the hierarchical nature of resulting models. While 
the following sections describe the process of creating a task duration model based on one set of 
observed covariates and completed durations, the hierarchical aspect of the framework allows 
multiple predictive models to feed into each other. For example, observed covariates of a lower 
model could be used to predict another set of variables, which are in turn used higher up the 
hierarchy as covariates to predict the task duration. Multiple layers of statistical models can be 
connected in this way to create a more complex hierarchy whilst maintaining clear model 
interpretability. This concept is illustrated in the application section of this paper, where a 
hierarchy of predictive models is employed to deliver real-time bus dwell time predictions. 

Advantages Of The Framework 

There are four primary advantages of using this framework. First, this framework offers more 
robust predictions in highly stochastic and noisy environments, which often have a large variance 
and noise in both the independent and dependent variables.  Second, the Bayesian framework 
effectively addresses uncertainty by delivering a confidence in the prediction through the 
posterior predictive distribution, rather than simply supplying a point estimate. This confidence 
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can be useful in control decisions when deciding how to act based on the reliability of an 
estimate. Third, the framework requires little data, both in the selection and prediction stages. 
The selection stage involves choosing the likelihood for the prediction variable and prior 
distributions for the model parameters, both of which can be computed from a small amount of 
historical data. In the prediction stage, the model can begin making predictions and updating the 
posterior distribution in a rolling fashion, removing the need for a ``training'' dataset once the 
model has been determined. Fourth, the model is computationally efficient because analytical 
conjugate posterior distributions are simply described by their parameters, and non-conjugate 
distributions can be sampled efficiently using Markov Chain Monte Carlo (MCMC) methods, or 
nested sampling techniques. 

The following sub-sections provide details on the individual steps in using the framework. 

Selecting The Likelihood Function For Task Duration 

The purpose of this first step is to find an analytic distribution that best explains task duration 
distributions in the empirical data. This is an important step because if such an analytic 
distribution is found, the posterior task duration distribution can be found in a computationally 
efficient manner. Unlike the training stages for many complex statistical models, this analysis 
step, which involves fitting analytical distributions and assessing their statistical similarities, 
does not require a large amount of data. 

 
 

Algorithm 1 describes the methodology for choosing a task duration likelihood function. The 
first step is to chronologically order the task duration data. The next step is to develop empirical 
cumulative density functions (CDFs) F based on temporally sequential sets of observations that 
fall within the time window of interest. To ensure tight tracking of time-varying parameter 
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distributions, it is prudent to consider intervals of time consistent with decorrelation of the 
underlying process. In case the task durations 𝛿! in the data are discretized (due to rounding 
errors), use Kernel Density Estimation (KDE) techniques to obtain a continuous CDF. Next, use 
the same temporally sequential sets of observations to fit analytic distributions. A general 
guidance in that regard is to consider the following six distributions: Non-central F, Burr, 
Weibull, Beta, Log-normal, and Fisk (Log-logistic). The next step is to statistically analyze 
similarities between the empirical CDF and each of the analytic distributions using the 
Maximum Deviation Test (MDT) [12]. 

As the name suggests, the maximum deviation test is a statistical technique designed to quantify 
statistical differences between two probability density functions. The methodology employed 
here generates a test scores that measures statistical similarity between the empirical and each of 
the analytic distributions. Here the test-score is nothing but the number of percentile values in an 
analytic distribution (𝐹!) that are within a user-defined tolerance bounds of the empirical 
distribution (F). The analytic distribution with highest test score (𝑠!"#) is statistically most 
similar to the empirical distribution. Pseudo-code for the methodology is given in Algorithm 2. 

Most non-parametric tests, such as the Kalmagorov Smirnov (KS) test [13], use maximum 
deviation from the mean as a measure to check for dissimilarity. Therefore, these tests fail to 
recognize dissimilarities in heavy-tailed, or multi-modal distributions.  On the other hand, MDT 
uses the sum of deviations of every percentile of the distribution as a measure for dissimilarity. 
This property, in addition to the symmetric nature of the test, makes MDT a very powerful test 
over either the KS Test or the Kullback-Leibler (KL) Divergence test [14]. Therefore, it is 
appropriate to use MDT for comparing the empirical distribution with each of the analytic 
distributions. 

Note that, should covariate data not be available a priori for prediction, the steps outlined in this 
sub-section can also be taken to determine an appropriate analytical model for use in estimating 
covariates. 
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Setting Priors And Generating Predictions 

The next step after choosing the likelihood function(s) is to choose a prior distribution for each 
parameter of the task duration analytical distribution, and any parameters necessary for other 
models used in the hierarchy for covariate estimation. This is a fairly straightforward process -- 
one can either choose a predictive prior based on a historical dataset, which need not be very 
large, or an uninformed prior in the absence of such data. A unique feature about any Bayesian 
approach is that the impact of the prior on the posterior predictive distribution diminishes as 
more Bayesian updates are made in the light of new data. This section presents details on how to 
compute posterior predictive distributions of task durations, using priors and likelihood functions 
in a real-time task planning or scheduling system. 

Consider a planning or a scheduling system in which task duration estimates for tasks are 
needed. After determining an appropriate model for the task distribution -- and any models 
necessary for covariate estimations -- to bootstrap the system, set prior distributions for all model 
parameters in the hierarchy. Once data is observed, a Bayesian update is performed to obtain the 
set of posterior distributions. These distributions are then used as priors for the next Bayesian 
update, and are used to obtain the posterior predictive distribution for the task duration. As 
mentioned earlier, closed form solutions for the posterior distributions are generally not 
available, and often they are computed using numerical integration [15], MCMC [16] methods, 
or nested sampling techniques [17]. In this paper, we use the Metropolis Hastings algorithm to 
obtain MCMC samples of the posterior distribution over a set of parameters. The specific details 
of this algorithm are presented in Algorithm 3. 

Posterior distributions of the parameters are used in computing the posterior predictive task 
duration distribution. A choice descriptive statistic (e.g., mean or median) of the resulting task 
duration distribution can be used to inform control decisions should point estimates be preferred 
to probability distributions. For example, typically, a precision parameter (or variance) of the 
posterior predictive distribution provides insight into "how good" a specific prediction is. In fact, 
one can make use of this information to make decisions on whether to incorporate a specific 
prediction value in task planning and scheduling. 

Lastly, while designing the system, it is important to pay attention to the convergence and 
mixing properties of numerical integration algorithms (in this specific case MCMC). Failing to 
do so may result in model parameters converging to point distributions. As noted by Brown et al. 
[18], there are three conditions under which MCMC posterior parameter estimate might 
converge to a point distribution: 1) existence of multiple local peaks in the posterior will make it 
difficult for MCMC algorithm to traverse the space of parameters; 2) even if the posterior is 
single moded, MCMC does not mix well due to the existence of equal posterior density for a 
large regions of the posterior; 3) Overly informative priors favors unreasonable large branch 
lengths. In theory, these problems can be tackled by specifying compound Dirichlet priors for 
branch lengths. However, this can also be prevented by ensuring the standard deviation of the 
posterior doesn’t converge to zero. In this work, we empirically determined lower bounds on the 
standard deviation of each parameter. If the standard deviation of any parameter's posterior 
distribution falls below the preset lower bound, the parameter is reset to have a Normal 
distribution with the same mean and a standard deviation above the lower bound, which was also 
empirically determined. 
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It is important to note that this algorithm is used in a rolling fashion to make task duration 
predictions for each task in real-time. This is a major advantage of the framework because there 
is no need for a training dataset to learn the model parameters, since they are estimated online via 
Bayesian updates. As we will demonstrate in subsequent sections of this paper, this framework is 
able to generate highly predictive models of task durations that are resilient to non-stationary 
stochastic processes. 
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APPLICATION: BUS DWELL TIME PREDICTION 

Background 

Real-time optimization of the dynamic flow of vehicle traffic through a network of signalized 
intersections is an important practical problem. It is well known that the vehicle flows at 
signalized intersections constitute a non-stationary stochastic process, and optimal control of 
those flows is NP-hard [19]. To cope with the inefficiency of searching in an exponential 
planning search space, distributed online planning approaches are proposed for real-time signal 
control [20, 21]. 

For example, according to the Surtrac planning algorithm [21], at each planning cycle, each 
intersection constructs a prediction of the sequence of arriving vehicles from its local sensors and 
then constructs a “signal timing plan” (an allocation of green time to various approaches) in real-
time that moves detected vehicles through the intersection in a way that minimizes cumulative 
wait time. As the intersection begins executing the plan, it also sends an expectation to its 
downstream neighbors of what traffic it expects to be sending their way, giving those 
intersections the “visibility” to plan over a longer horizon. Intersection plans are executed in 
rolling horizon fashion and the planning process repeats every couple of seconds. 

Furthermore, all these optimization algorithms rely on a prediction of vehicle arrival times in the 
form of sequences of vehicle clusters that are detected along different approaches. They use an 
aggregate representation of approaching traffic flows as sequences of clusters (i.e., queues and 
platoons) and predict arrival time of these clusters strictly based on use of free flow speed. 
However, this aggregate representation does not distinguish between vehicle classes (e.g., 
passenger cars, transit vehicles like buses etc) that might have very different flow patterns and 
hence arrival times. For example, unlike passenger cars, transit vehicles make frequent stops (to 
pick up or drop off passengers) with uncertain dwell times. The presence of transit vehicles 
stopping on urban streets can also restrict or block other traffic on the road depending on stop 
locations. As a consequence, executable schedules generated by real-time online planning 
algorithms are disrupted resulting in inefficient traffic flows. These planning algorithms can 
generate better anticipatory schedules if they have reasonably good estimates of vehicle cluster 
arrival times. The framework discussed in the previous section can play an instrumental role in 
providing such estimates. 

In principle, one can treat vehicle cluster arrival times as various tasks, where the goal is to 
predict task durations and quantify associated uncertainties. For the reasons mentioned above, 
accurate transit bus dwell time predictions play a vital role in achieving this goal. In that regard, 
the purpose of this application demonstration is to test the efficacy of the proposed Bayesian 
framework for task duration predictions (in this context bus dwell times). 

Model Overview 

Constructing a predictive bus dwell time distribution model involves three sub-tasks: 1) choosing 
the likelihood function for posterior updates; 2) choosing principal covariates that influence 
dwell time distributions; and 3) formalizing a dwell time model using information from the 
previous sub-tasks. 
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Likelihood Function For Posterior Updates 

Consistent with the guidance provided in the framework, we used historical data for choosing a 
likelihood function. Specifically, we used the Port Authority of Allegheny County's (PAAC) 
Advanced Vehicle Location (AVL) weekday dataset. The data is chronologically ordered, and 
empirical CDFs based on every fifteen minutes of data are created. Dwell times in the APCC 
dataset are rounded to the nearest second. To address this, two different continuous empirical 
CDFs are generated using Gaussian, and Gamma KDE techniques. Next, using the same 
temporally sequential data six analytic distributions (Non-central F, Burr, Weibull, Beta, Log-
normal, and Fisk or Log-logistic) are generated. Max-deviation scores are computed between 
each analytic distribution fit and each of the two empirical distributions. Based on MDT scores, 
we chose the Log-logistic (Fisk) distribution as the likelihood for the posterior updates. 

Covariates For Dwell Times 

In order to develop a dwell time model with covariates, several relationships were explored 
between covariate data and dwell time, such as the number of onboarding passengers (𝑥!"), 
number of alighting passengers (𝑥!""), and load of the bus (𝑥!"#$), A clear positive correlation 
was found between first two covariates and dwell time, which were chosen as covariates in 
developing the predictive dwell time distribution model. A scatter plot demonstrating the 
relationship between the number of onboarding passengers and the dwell time is presented in 
Figure 1. Figure 2 demonstrates not only that more onboarding passengers corresponds to longer 
dwell times, but also that the variance of the dwell time increases as more passengers board. 

 
 

Figure 1: Scatterplot of # onboardings vs. dwell times 
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Figure 2: Conditional dwell time distributions for several numbers of onboarding 
passengers. Note that the variance is larger when more passengers board. 

 
Dwell Time Model With Covariates 

The following describes a Bayesian parametric model for bus dwell times using two covariates 
xon and xoff.  Based on the analysis presented in the subsection on choosing the likelihood 
function, bus dwell time is modeled as a random variable X following a Log-Logistic (Fisk) 
distribution. Equivalently, bus dwell times X are distributed following the exponential of the 
Logistic distribution. Covariate parameters are introduced by parameterizing the s parameter, and 
the median of the Log-Logistic distribution. The exponential relationship between the Logistic 
and Log-Logistic distributions is used in this formulation. This parameterization is described 
below: 

 
X = exp(Y) 

 
Where Y ~ Logistic (µ, s) 

 
𝜇 = ln 𝛼 = ln (𝛽!!𝑥 +  𝛽!) 

 
𝑠 =  1 𝜏 =  1 𝛽!!𝑥

 
 

𝛽! =  𝛽!!" 𝛽!
!"" !
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𝛽! =  𝛽!!" 𝛽!
!"" !

 
 

𝑥 =  𝑥!" 𝑥!"" ! 
 

At any given time, the belief of the two parameters µ and s describe current belief of bus dwell 
time distribution. In a real-time system with access to dwell time observations, belief of the 
parameter distributions is continuously updated in the light of new data. Bayes' Theorem offers a 
natural way to achieve such an update scheme. As only one observed dwell time d is considered 
during any Bayesian update, the likelihood function is given by 

 
𝐿 𝜇, 𝑠 ln 𝑑 = 𝑓(ln 𝑑 , 𝜇, 𝑠) 

 
where f  is the probability density function of a Logistic distribution. 

Before obtaining any posterior distributions to use as priors, we bootstrap the model using a 
Normal prior for each of the 4 covariate parameters: 𝛽!!", 𝛽!

!"", 𝛽!!", 𝛽!
!"" and offset parameter 

𝛽!. Once a set of posterior distributions is obtained, the most recent posterior distributions are 
used as priors in the next Bayesian update. The Metropolis Hastings algorithm is employed to 
obtain MCMC samples of the posterior distributions for four covariate parameters and the offset 
parameter. 

To make a dwell time prediction for an approaching bus, we observe values for covariates xon, 
and xoff, and use posterior distributions of each β to determine the posterior predictive 
distribution of X. 

This process is repeated in the light of new data, using the most recent posterior distributions of 
each β as priors in the next Bayesian update. The means of several model parameters are shown 
in Figures 3 and 4, where a real-time prediction scenario is simulated on historical data in a 
rolling fashion. 

MODEL TESTING  

We tested the efficacy of the proposed dwell time prediction model on bus dwell time data 
provided by the Port Authority of Allegheny County in Pittsburgh, Pennsylvania for the period 
from September 2012 to August 2014. While the dataset spans over two years, data from 
October 2012 is used to test the Bayesian model. We compared the results of the Bayesian model 
to those of a linear regression model for benchmarking purposes. We trained a linear regression 
model on September 2012 and tested on October 2012, which are good training and test datasets 
since it is widely accepted that seasonal trends in bus dwell time distributions are statistically 
similar [22] (also, readers interested in dwell time distribution models can find comprehensive 
reviews in [22]). Therefore, the linear regression model is not really put to the test. In principle, 
regression equations for September 2012 & October 2012 should look very similar, suggesting 
that predictions on the test dataset should be reasonably good. However, the main objective of 
this analysis is to evaluate the robustness of the proposed framework. In other words, the goal is 
to check whether the Bayesian model is able to predict dwell times without any training and how 
good those predictions are compared to predictions from a well-trained traditional model. 
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Figure 3: Means of model parameters throughout simulation. beta_1 corresponds to 

beta_alpha, beta_2 corresponds to beta_tau 
 

 
Figure 4: Standard deviations of model parameters throughout simulation. Note 

that the MCMC samples are reset when the standard deviation falls below a specified 
threshold. 

 
With these objectives in mind, we tested the robustness of the Bayesian framework at twelve 
different bus stops in the East End region along Centre Avenue corridor in Pittsburgh, PA. 

Cumulative Density Functions Of Dwell Times  

Analyzing cumulative density functions (CDFs) of dwell times provides useful insights into the 
reliability (presence or absence of variance) of these distributions. From the standpoint of 
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stochastic dominance, the distributions with curves furthest to the left have smaller variance in 
dwell time distributions and hence are more reliable. 

 
Figure 5: Cumulative density functions of dwell times 

 
Figure 5 presents dwell time CDFs for test bus stops of interest. It can be seen that dwell time 
distributions have the largest variance at Negley Ave at Centre Ave (CDF in red), followed by 
Centre Ave at Aiken Ave (blue), Centre Ave at Morewood Ave (cyan), Centre Ave at Craig St 
NS (peach), and Centre Ave at Millvale (light grey). This information is useful because 
predicting dwell time distributions at these intersections is particularly hard due to their highly 
stochastic nature. 

Model Performance  

As mentioned earlier, the efficacy of the Bayesian model is evaluated on data from October 2012 
and the results are benchmarked against those obtained from a linear regression model, which is 
trained at each bus stop on September 2012 data. The same Bayesian parametric model is applied 
to each of the bus stops, and we set Normal priors for each of the 4 covariate parameters and the 
offset parameter 𝛽!. Covariate parameters are updated on an ex post facto basis, and dwell time 
predictions are made starting from the very first new data point onward. 

We use the ability to predict dwell times within a small error threshold as a performance metric 
to evaluate the models. The rationale for choosing small error bounds is to account for the fact 
that these dwell time values are used by planning algorithms in real-time systems, so larger 
errors will generate schedules that are far from optimal. For this reason, the fraction of 
predictions within error bounds of [-5, 5] seconds is used as a performance metric. Effectively, 
this fraction represents the area under the error distribution density function within these 
tolerance bounds. This is a more informative metric in the context of traffic signal scheduling 
due to the importance of maximizing the proportion of very close predictions. 
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Table 1 summarizes performance of these two models. As can be seen, this table contains three 
sets of performance comparisons: 1) morning peak hour (7:00 - 10:00 AM); 2) evening peak 
hour (4:00 - 7:00 PM); and 3) the entire test dataset. This table has four columns: first column 
presents bus stop location information; second column presents fraction of dwell time predictions 
within the range of -5 and 0 seconds; third and fourth columns contain similar information but 
for ranges of [0, 5] and [-5, 5] seconds respectively. Lastly, each row contains results for a 
specific bus stop.   

The following inferences can be drawn based on these results: First, the Bayesian predictive 
model performs at least as good as or better than the linear regression model. This is very 
encouraging to see as it validates the main philosophy behind the development of this 
framework, i.e., to develop a predictive probabilistic model for estimating task durations without 
making use of large training datasets. Second, for the scenarios in which dwell time distributions 
are highly stochastic (refer Fig 5), the Bayesian prediction model significantly outperforms the 
linear regression model (refer to results for Negley Ave at Centre Ave, Centre Ave at Aiken Ave, 
and Centre Ave at Craig St NS). Figure 6 demonstrates this trend for Negley Ave at Centre Ave - 
the Bayesian model has a much higher proportion of very close predictions than the linear 
regression error distribution. This again corroborates the hypothesis of quick adaptability of the 
Bayesian model. Third, in addition to dwell time estimates, the variance or precision parameter 
of the Bayesian model quantifies the uncertainty of each prediction. 

 
Figure 6: Fraction of absolute prediction error within a threshold for our 

framework vs. linear regression. Note that the Bayesian hierarchical model has a higher 
proportion of small errors. 
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TABLE I: Model Performance Comparisons 
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Hierarchical Bayesian Model  

To demonstrate the ideas of hierarchical model, a variant of dwell time estimation model is 
considered. This model takes two input covariates: 1) estimated value of number of onboardings 
(𝑥!"), and 2) observed value of number of alightings (𝑥!""). Arrival rate of passengers at a bus 
stop can be modeled as a doubly stochastic Poisson process, and we developed a Bayesian model 
to estimate these arrival rates. This model uses predicted arrival rate and known bus headway in 
estimating 𝑥!". The model details are presented below. 

Let 𝑌! is the number of passengers boarding onto the bus during a bus arrival event i. The arrival 
rate of passengers at a bus stop is modeled using 𝜆 parameter of a Poisson distribution. For the 
purpose of Bayesian updates, the posterior for 𝜆 represented by p(𝜆 | y) is derived as:   

 

𝑝 𝑦 𝜆 =
𝜆!!𝑒!!

𝑦!!

!

!!!

 ∝  𝜆!"𝑒!!" 

 
This is the kernel of a Gamma distribution. Therefore, if 𝜆 ~ 𝐺𝑎(𝛼,𝛽), then 

𝑝(𝜆/𝑦) ∝ 𝑝(𝑦/𝜆)𝑝(𝜆) 
 

𝑝(𝜆/𝑦) ∝ 𝜆!!𝑒!!"𝜆!!!𝑒!!" 
 

𝑝(𝜆/𝑦) = 𝜆!!!!!!𝑒!(!!!)! 
 

𝜆|𝑦 ~ 𝐺𝑎(𝛼 + 𝑛𝑦,𝛽 + 𝑛) 
 

where 𝛽 is number of prior observations; 𝛼 is the sum of previous arrival rates. 

A non-informative prior such as Jeffreys' prior is used to bootstrap the system.  So 𝑝 𝜆 ∝
𝐽(𝜆)!/! where 𝐽 𝜆  is the Fisher information, which is the negative expectation of the second 
derivative of the log likelihood.  

 
log𝑝(𝑦|𝜆) =  − log 𝑦! + 𝑦 log 𝜆 −  𝜆 (log likelihood) 

 
The second derivative of the above function is equal to −𝑦/𝜆! 

 

𝐽 𝜆 =  −𝐸 −
𝑦
𝜆! 𝜆 =  

1
𝜆 

 

𝐽(𝜆)!/! =  
1
𝜆

 

 
The previous equation can be treated as Ga(1/2, 0). Note that this is an improper Gamma 
distribution, but it is acceptable for the purpose of Bayesian updates. 
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In order obtain a posterior arrival rate distribution via a Bayesian update, a list of observed 
arrival rates are maintained, which are defined by the number of onboardings divided by the 
headway. Once a new observation (headway and onboardings) is made, the arrival rate is 
computed and appended to the list. A new value for α is calculated as sum of the recent β arrival 
rate observations, where β is an integer that should be empirically found to maximize prediction 
accuracy. An onboarding prediction for an approaching bus is made by multiplying a point 
estimate of the posterior arrival rate distribution (e.g., mean, median) with the headway. Here the 
headway information can be obtained from published bus time tables. 

The hierarchical model is tested at five out of twelve intersections, and results are summarized in 
Table 2. The results are benchmarked against any traditional learning model, as the main idea is 
to demonstrate details of the hierarchical Bayesian framework. 

 
Table 2: Hierarchical Fisk Model 

 
Conclusions And Future Work 

This paper presents a hierarchical Bayesian predictive probabilistic model for task duration 
predictions in real-time systems. The framework is computationally efficient, reduces the 
problem of overfitting, and requires little or no training to start producing good predictions. 
Furthermore, unlike traditional learning models, the proposed framework effectively addresses 
uncertainty by delivering a confidence in the prediction through the posterior predictive 
distribution, rather than simply supplying a point estimate. 

The ideas presented in the framework are tested in the context of predicting dwell time 
distributions of a transit buses in urban networks. Specifically, a Bayesian parametric model for 
bus dwell times was created using two covariates, 𝑥!" , and 𝑥!"". The efficacy of this model is 
tested at twelve different bus stops in the East end region of Pittsburgh, PA on real-world bus 
dwell time data. The results of the model are benchmarked against those obtained from a linear 
regression model. The results demonstrate that the Bayesian model is able to perform at least as 
good as, and in most instances far better than traditional learning models. 
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Finally, to demonstrate the ideas of hierarchical models, a new dwell time estimation model was 
considered. The input parameter 𝑥!" was estimated, whereas the other parameter 𝑥!"". was 
observed. Model details are presented for estimating 𝑥!". The hierarchical model was tested at 
the twelve intersections and the results do validate the usefulness of the framework. 

We envision two future directions to this research: First, we are interested in integrating the bus 
dwell time model into an online planning algorithm like Surtrac to investigate the system 
performance improvements. Second, we want to investigate the efficacy of this framework in 
other domains of planning & scheduling. 

 

REFERENCES 

1. R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,”Artificial Intelligence, vol. 
49, no. 1-3, pp. 61–95, May 1991.. 

2. T. Vidal and G. M., “Dealing with uncertain durations in temporal constraint networks 
dedicated to planning,” in Proceedings 12th European Conference on Artificial Intelligence 
(ECAI-1996), 1996, pp. 48–54. 

3. P. Morris, M. Muscettola, and T. Vidal, “Dynamic control of plans with temporal 
uncertainty,” in Proceedings 17th international joint conference on Artificial Intelligence, 
Seattle, WA, August 2001, pp. 494–499. 

4. N. Policella, A. Cesta, A. Oddi, and S. Smith, “Solve-and-robustify: Synthesizing partial 
order schedules by chaining,” Journal of Scheduling, vol. 12, no. 3, 2009. 

5. M. Drummond, J. Bresina, and K. Swanson, “Just in-case scheduling,” in Proceedings 
AAAI-94, 1994. 

6. H. Younes and R. Simmons, “Policy generation for continuous time stochastic domains with 
concurrency,” in Proceedings ICAPS-04, Whistler, Canada, 2004.  

7. I. Little, D. Aberdeen, and T. S., “Prottle: A probabilistic temporal planner,” in Proceedings 
AAAI-05, 2005. 

8. Mausam and D. Weld, “Planning with durative actions in uncertain domains,” Journal of 
Artificial Intelligence Research, vol. 31, pp. 33–82, 2008. 

9. J. Brooks, A. Reed, E.and Gruver, and J. Boerkoel, “Robustness in probabilistic temporal 
planning,” in Proceedings AAAI-15, 2015, p.3239–3246. 

10. S. F. Smith, A. Gallagher, T. L. Zimmerman, L. Barbulescu, and Z. B.Rubinstein, Distributed 
management of flexible times schedules,” in Proceedings 6th International Conference on 
Autonomous Agents and Multi-Agent Systems (AAMAS 07), Honolulu Hawaii, May 2007. 

11. S. Yoon, A. Fern, R. Givan, and S. Kambhampati, “Probabilistic planning via determinization 
in hindsight,” in Proceedings 23rd AAAI Conference on Artificial Intelligence, 2008. 



   

 19 

12. I. K. Isukapati and G. F. List, “Synthesizing route travel time distributions considering spatial 
dependencies,” in Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International 
Conference on. IEEE, 2016, pp. 2143–2149. 

13. R. Wilcox, “Kolmogorov–smirnov test,” Encyclopedia of biostatistics, 2005.  

14. P. J. Moreno, P. P. Ho, and N. Vasconcelos, “A kullback-leibler divergence based kernel for 
svm classification in multimedia applications,” in Advances in neural information processing 
systems, 2004, pp. 1385–1392. 

15. L. Tierney and J. B. Kadane, “Accurate approximations for posterior moments and marginal 
densities,” Journal of the american statistical association, vol. 81, no. 393, pp. 82–86, 1986. 

16. S. Chib and E. Greenberg, “Understanding the metropolis-hastings algorithm,” The american 
statistician, vol. 49, no. 4, pp. 327–335, 1995. 

17. J. Skilling et al., “Nested sampling for general bayesian computation,”Bayesian analysis, vol. 
1, no. 4, pp. 833–859, 2006. 

18. J. M. Brown, S. M. Hedtke, A. R. Lemmon, and E. M. Lemmon, “When trees grow too long: 
investigating the causes of highly inaccurate bayesian branch-length estimates,” Systematic 
Biology, vol. 59, no. 2, pp.145–161, 2009. 

19. C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of optimal queuing network 
control,” Mathematics of Operations Research, vol. 24, no. 2, pp. 293–305, 1999. 

20. S. Sen and K. L. Head, “Controlled optimization of phases at an intersection,” Transportation 
science, vol. 31, no. 1, pp. 5–17, 1997. 

21. S. F. Smith, G. J. Barlow, X.-F. Xie, and Z. B. Rubinstein, “Smart urban signal networks: 
Initial application of the surtrac adaptive traffic signal control system.” in ICAPS, 2013. 

22. Isukapati, I. K., Rudová, H., Barlow, G. J., & Smith, S. F. (2017). Analysis of Trends in Data 
on Transit Bus Dwell Times. Transportation Research Record: Journal of the Transportation 
Research Board, (2619), 64-74. 

 


