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Abstract

Future SAE Level 4 and Level 5 autonomous vehicles will 
require novel applications of localization, perception, 
control and artificial intelligence technology in order 

to offer innovative and disruptive solutions to current mobility 
problems. This paper concentrates on low speed autonomous 
shuttles that are transitioning from being tested in limited 
traffic, dedicated routes to being deployed as SAE Level 4 auto-
mated driving vehicles in urban environments like college 
campuses and outdoor shopping centers within smart cities. 
The Ohio State University has designated a small segment in 
an underserved area of campus as an initial autonomous 
vehicle (AV) pilot test route for the deployment of low speed 
autonomous shuttles. This paper presents initial results of 
ongoing work on developing solutions to the localization and 
perception challenges of this planned pilot deployment. The 
paper treats autonomous driving with real time kinematics 
GPS (Global Positioning Systems) with an inertial measure-
ment unit (IMU), combined with simultaneous localization 
and mapping (SLAM) with three-dimensional light detection 

and ranging (LIDAR) sensor, which provides solutions to 
scenarios where GPS is not available or a lower cost and hence 
lower accuracy GPS is desirable. Our in-house automated low 
speed electric vehicle is used in experimental evaluation and 
verification. In addition, the experimental vehicle has vehicle 
to everything (V2X) communication capability and utilizes a 
dedicated short-range communication (DSRC) modem. It is 
able to communicate with instrumented traffic lights and with 
pedestrians and bicyclists with DSRC enabled smartphones. 
Before real-world experiments, our connected and automated 
driving hardware in the loop (HiL) simulator with real DSRC 
modems is used for extensive testing of the algorithms and 
the low level longitudinal and lateral controllers. Real-world 
experiments that are reported here have been conducted in a 
small test area close to the Ohio State University AV pilot test 
route. Model-in-the-loop simulation, HiL simulation and 
experimental testing are used for demonstrating the feasibility 
and robustness of this approach to developing and evaluating 
low speed autonomous shuttle localization and perception 
algorithms for control and decision making.

Introduction

For the sake of development of smart city, the Ohio State 
University has designated a small segment in an under-
served area of campus as an initial Autonomous 

Vehicle (AV) pilot test route for the deployment of SAE Level 
4 low speed autonomous shuttles. This paper presents prelimi-
nary work towards proof-of-concept low speed autonomous 
shuttle deployment in this AV pilot test route which extends 
from our research lab through a 0.7 mile public road with a 
traffic light intersection and low speed traffic to our main 
research center. Our approach is to develop and test elements 
of this autonomous system in the private parking lot right 
next to our lab and in a realistic virtual replica of the AV pilot 
test route created within our Hardware-in-the-Loop (HiL) 
simulator environment. As we have already reported our work 
on GPS waypoint following based path tracking in our earlier 
papers, this paper concentrates on LIDAR SLAM based local-
ization for path tracking, a simple decision making logic for 
automated driving and experimental and simulation results.

Simultaneous localization and mapping (SLAM) as first 
proposed by Leonard and Durrant-Whyte [1] is used to build 
up maps of surrounding environment with the aid of sensors 
such as light detection and ranging (LIDAR) sensor or camera, 
while also estimating the position of a robot simultaneously. 
A reliable and accurate solution of SLAM problems lay the 
foundation for an autonomous navigation and control platform 
[2, 3]. During the last decade, highly effective SLAM tech-
niques have been developed and state-of-the-art two dimen-
sional laser SLAM algorithms are now able to have satisfactory 
performance in terms of accuracy and computational speed 
(e.g. GMapping [4] and Hector SLAM [5]). In addition, 
researchers have successfully extended SLAM applicable 
scenarios from indoor environment to outdoor environment 
for autonomous vehicles [6, 7]. Probabilistic map distributions 
over environment properties followed by Bayesian inference 
[8] increased robustness to environment variations and 
dynamic obstacles, which enabled the vehicle to autonomously 
drive for hundreds of miles in dense traffic on narrow urban 
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roads. A fast implementation of incremental scan matching 
method based on occupancy grid map was introduced in [9] 
where data association was also applied to solve the multiple 
object tracking problem in a dynamic environment. Most of 
the previous work in the literature in SLAM methods has 
concentrated on the evaluation of localization performance 
whereas SLAM is used and evaluated as part of an automated 
path following system here.

In this paper both SLAM and GPS based localization are 
used for localization and path following. The SLAM system 
used is based on the Levenberg-Marquardt algorithm and 
results are compared with the Hector SLAM method. First, a 
reasonable convergence criteria was provided for the solution 
to the Levenberg-Marquardt algorithm in contrast to the fixed 
iteration step setting implemented in Hector SLAM, enabling 
more accurate and reliable pose estimation when combined 
with an integrated control system for smooth and comfortable 
path following performance. LIDAR is the only sensor that 
this SLAM algorithm depends on, posing an effective solu-
tions to scenarios where GPS is not available or a lower cost 
and hence lower accuracy GPS is desirable. Both HiL simula-
tions containing different traffic scenarios and relevant real 
world experiments were conducted. Results were demon-
strated and evaluated to prove the feasibility and robustness 
of this approach to for low speed autonomous shuttle localiza-
tion and perception algorithms for control and decision making.

The paper continues with an overview of the autonomous 
shuttle used in this study, the vehicle dynamics and path 
tracking error models. The LIDAR SLAM algorithm and 
experimental GPS and SLAM based path following results are 
presented next. This is followed by a description of the HiL 
simulator and how the AV test pilot route is replicated in the 
simulator including communication with the traffic light 
controller. After simulation results, the paper ends with 
conclusions and directions of ongoing work.

System Overview

Hardware and Platform
The vehicle used in the experiments for this study is a small, 
low speed, fully-electric two seater shuttle used for ride 
sharing applications (Dash EV). The architecture and 
hardware presented in this paper is general in nature and also 
implemented on other vehicles in our lab [10]. In order to 
achieve autonomous driving capability, steering, throttle and 
brake in this vehicle were converted to by-wire. This is done 
by adding actuators into the vehicle, since it was not built with 
them as some of the commercial sedan vehicles. For steering 
actuation, a smart motor was connected to the steering mech-
anism through gears. For brake actuation, a linear electric 
motor was fixed behind the brake pedal, that pushes or pulls 
according to the position command. For throttle, an electronic 
by-pass circuit was constructed and used to override the 
throttle signal that is sent to vehicle Electronic Control Unit 
(ECU) with the throttle command.

Sensors are added for localization and environmental 
perception after steering, throttle and brake functions are 

converted to drive-by-wire. These sensors are GPS, a LIDAR 
sensor, a Leddar sensor and a Point Grey camera used in 
this paper as a backup sensor. The Leddar sensor is a solid-
state LIDAR which we use to get information about the 
obstacles in front of the vehicle. These obstacles can be 
vehicles, pedestrians, bicyclists etc. It is mainly used for 
emergency purposes, when there is an obstacle very close to 
the vehicle which creates a need to stop. It can be also used 
in low speed car following applications such as Adaptive 
Cruise Control (ACC) since its range is 50 m. For localiza-
tion, GPS and LIDAR sensors were used. We use a differen-
tial GPS with Real-Time Kinematic (RTK) correction capa-
bility, which provides about 2-5 cm accuracy when RTK 
correction signals are used. Also with the differential 
antennas, it provides heading information even while the 
vehicle is stationary. LIDAR is used for both localization 
with SLAM and perception. It is a 16 channel Velodyne 
LIDAR PUCK (VLP-16) which is mounted on the top of the 
vehicle horizontally to guarantee a horizontal Field of View 
(FOV) of 360 degrees with vertical FOV of 30 degree from 
the surrounding environment. A 3D point cloud is generated 
at a frequency of 10 Hz. Theoretically, the LIDAR’s maximum 
detection range can reach up to 100 m depending on applica-
tion while in this work, detection range used for localization 
was set to 80 m to achieve satisfactory point cloud density 
and quality.

The element between the actuators and sensors is the 
dSPACE Microautobox (MABx) electronic control unit that 
is used for rapid prototyping of the low-level lateral and 
longitudinal direction controllers and basic decision-making 
algorithms created as a Simulink models. Simulink coder 
is used to convert the model into embedded code and the 
code is uploaded to the MABx device. The generated code 
can later be easily embedded in a series production level 
 electronic control unit at the end of the research and 
development phase.

Sensors send data to the Microautobox electronic control 
unit with a means of communication specific to the sensor, 
like CAN or User Datagram Protocol (UDP) for most of our 
sensors. This data is fed to controllers running within the 
device. Controllers are created in the Simulink and outputs 
of the controllers are connected to output blocks that corre-
spond to I/O ports of the Microautobox. These I/O ports are 
physically connected to actuators or drivers of actuators to 
provide reference signal and achieve autonomous driving. The 
experimental vehicle also has a Dedicated Short Range 
Communication (DSRC) modem to communicate with other 
vehicles, infrastructure and pedestrians with DSRC enabled 
smartphones. For V2X communication, all messages are sent 
using the standard messages of the Society of Automotive 
Engineers (SAE) J2735 DSRC Message Set and use the standard 
communication rate of 10  Hz. Devices and actuators are 
powered through a 12 V battery placed in the trunk of the 
vehicle. Some of the hardware discussed in this section is 
shown in Figure 1.

Vehicle Dynamics Model
The vehicle model and path following algorithm used are 
presented briefly in this and the following section. The lateral 
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dynamics and path tracking error model is illustrated in 
Figure 2 and given in state space form as
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where β is side slip angle, r is yaw rate, V is combination 
of lateral and longitudinal velocity of the vehicle body, ∆Ψ is 
yaw angle relative to the tangent of the desired path, ls is the 
preview distance and y is lateral deviation from desired path 
with respect to preview distance. The control input is the 
steering angle δf. ρref = 1/R is the road curvature where R is 
the road radius. Other terms in the state space model are
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where m is the vehicle mass, J is the moment of inertia, μ 
is the road friction coefficient, Cf and Cr are the cornering 
stiffnesses, lf is the distance from the Center of Gravity of the 
vehicle (CG) to the front axle and lr is the distance from the 
CG to the rear axle.

Path Tracking Model
The low level automated driving tasks are lateral and longitu-
dinal control. The path determination and path tracking error 
computation are described briefly in this section. The path 
tracking model consists of two parts, which are offline genera-
tion of the path and online calculation of the error according 
to the generated path. These parts are explained in 
following subsections.

A. Offline Path Generation The path following algo-
rithm employs a pre-determined path to be provided to the 
autonomous vehicle to follow [11]. This map is generated from 
GPS waypoints where these points can be pulled from an 
online map or can be collected through recording during a 
priori manual driving. These data points are then divided into 
smaller groups named segments with equal number of data 
points for ease of formulation. These segments are both used 
for curve fitting and velocity profiling through the route. After 
dividing the road into segments, a process of fitting a third 
order polynomial is performed as
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Where i represents the segment number and terms a, b, 
c, d are polynomial fit coefficients for the corresponding 
segment. Fitting the data points provides effective replication 
of the curvature that the road carries and also eliminates the 
noise in the GPS data points. To provide a smooth transition 
from one segment to another by satisfying continuity of the 
polynomials and their first derivatives in X and Y, we use
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The X and the Y points derived from the GPS latitude and 
longitude data using a degree to meter conversion, are fit using 
a single parameter λ, where λ is the variable for the fit which 
varies across each segment between 0 and 1, resulting in
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 FIGURE 1  Hardware on the vehicle.
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 FIGURE 2  Illustration of single track model.
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B. Error Calculation After the generation of path coef-
ficients, an error is calculated for the lateral controller to use 
as input. Heading and position of the vehicle is provided by 
means of localization, in this case either SLAM or GPS. Using 
these, the location of the car with respect to the path in other 
words the deviation from the path is calculated. This approach 
reduces both oscillations and steady state lateral deviation 
compared to calculation with respect to position only. In order 
to find an equivalent distance parameter to add to the first 
component distance error, a preview distance ls is defined. 
Then, the error becomes,

 y h ls= + sin( )Dy  (6)

Where ∆ψ is the net angular difference of heading of the 
vehicle from the heading tangent to the desired path and y is 
the total error of the vehicle computed at preview distance ls 
as is illustrated in Figure 3.

Finally, error is fed to a robust PID controller which 
controls the actuation of steering of the vehicle.

SLAM Algorithm
The SLAM based localization algorithm is presented in this 
section. In this study, ground plane is always assumed to be 
flat and hence only 2D mapping and localization are required 
while z direction pose information in Cartesian coordinate 
system is not necessarily considered. In the following algo-
rithm, the pose state vector (x, y, θ)T, comprised of 2D Cartesian 
coordinates and orientation angle, and thus three degrees of 
freedom (DOF), is used to represent the pose information for 
the low speed autonomous shuttle. As has been presented, the 
16 channel Velodyne LIDAR can provide 3D point cloud 
including 360 degree FoV information of the surrounding 
environment. However, in this context, considering the 
constraint of the processor in this configuration, additional 
computational complexity will negatively affect the whole 
system in terms of real time performance. Therefore, so as to 
obtain planar scan information, 3D point cloud is projected 
into 2D space.

Before the projection, ground noise as seen in Figure 4 
needs to be removed by building up occupancy height map 
(section A). Once the planar scan end points are obtained, 
scan matching process is used to align the current scan end 
points either to those in last frame or to the built up map in 

order to derive the pose transformation of the shuttle. A more 
reliable and accurate optimization framework inspired by 
Hector SLAM [5] is imposed for the scan matching process, 
where more reasonable stop criteria is also introduced 
(section B).

A. Ground Noise Removal and Projection Occupancy 
height map is built up for ground noise removal. The LIDAR 
position is selected as the origin and the Cartesian coordinate 
system is built with the x-y plane representing the ground 
plane and the z axis being vertical to it. As shown in Figure 5, 
from a top-down view, we divide the x-y plane into many 
square cells of equal size. In this work, cell size is set to 
0.2 m × 0.2 m. For each of the 3D points Pi = (xi,yi,zi)T, we can 
find a cell Cj that it belongs to. Subsequently, for each of the 
cells Cj by comparing the heights of the points to a threshold 
hthres (set to 0.3 m in this work), if

 z z hj j thresmax, min,- £  (7)

 FIGURE 3  Illustration of error calculation.
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 FIGURE 4  Raw 3D point cloud with ground noise.
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 FIGURE 5  Occupancy height map. Cj is one of the cells. 
Height of every cell is determined by the maximum height 
difference in that cell.
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then this cell is defined as not occupied or comprised of 
ground noise and thus left as empty. If

 z z hj j thresmax, min,- ³  (8)

then this cell is defined as occupied and all the 3D points 
included in it are remained for further projection.

In the projection step, polar coordinate system is used to 
represent the position of each scan end point in 2D plane. For 
each 3D point Pi, its angular position in x-y plane can be 
expressed as:

 ai i ia y x= tan ( , )2  (9)

where atan2 is four-quadrant inverse tangent and hence 
αi ∈ [−π, π]. The range of the 2D scan corresponding to the 
3D point Pi can be expressed as:

 range x yi i i= -2 2  (10)

Note that there can be more than one projected 2D scan 
point in the same direction with different ranges. The ultimate 
range of 2D scan end point is the smallest range in that direc-
tion. Therefore, every projected 2D scan beams with their 
associated scan end points can be identified by angular posi-
tions, as shown in Figure 6.

B. Map Generation and Scan Matching In this work, 
the same map access methodology as [5] is employed, which 
can provide an effective solution to the accuracy limitation 
caused by discrete property of occupancy grid maps.

Due to the high accuracy and frequency of modern 
LIDAR, iterative optimization algorithms are now possible to 
minimize the error between obtained scan end points and built 
up maps, delivering the optimal alignment in the scan matching 
step. In this work, instead of Gauss-Newton optimization 
performed in Hector SLAM [5], the Levenberg-Marquardt 
algorithm [12] is applied to provide faster convergence for same 
accuracy compared with Gauss-Newton optimization, which 
can tremendously benefit the real time system on autonomous 
shuttles. Given the generated map occupancy value M(Pm) 

corresponding to the continuous map point loca-
tionPm = (xm, ym)T, our goal is to find the rigid transformation 
ξ = (px, py, θ)T which minimizes the overall summation of occu-
pancy error between the current scan end points and the most 
updated map, consequently the objective function and desired 
rigid transformation can be defined as:

 E M S
i
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where n is the number of scan end points, si = (si, x, si, y)T 
is the world coordinate of the transformed scan end point. 
Si(ξ) is a function of ξ that transforms scan end point coordi-
nate into world system, expressed as:
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and M(Si(ξ)) ∈ [0, 1] is the occupancy value at the location 
given by Si(ξ). Once this is performed, the optimal transforma-
tion that best aligns the current frame with the most updated 
map points is obtained.

This quadratic cost function E can be solved by Levenberg-
Marquardt algorithm [13] efficiently. Starting from an initial 
estimation of the transformation, e.g. the optimal transforma-
tion provided in last frame, ξ0, in every iteration, a transfor-
mation update Δξis added to the accumulated transformation 
so far, ξ, so as to move forward to the minimum point and 
further minimize the function. Intuitively, by each iteration 
step, the cost function is closer to 0:

 E M S
i

n

i= - +( )( )éë ùû ®
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å

1

2
1 0x xD  (14)

By replacing M(Si(ξ + Δξ)) with its Taylor series expan-
sion, we obtain
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By letting the partial derivative with respect to Δξ equal 
to 0:
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according to Levenberg-Marquardt algorithm, the 
optimal solution for Δξ can be determined by:
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where wi is weight associated with point Pi, which mainly 
down weights the low quality scan end points with big error 

 FIGURE 6  Projected 2D scan end points.
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and hence enhance robustness against noise [14]. λ is a 
damping parameter (initially set to 0.01 in this work), I is 
identity matrix, H is weighted approximate Hessian matrix, 
defined by:

  H w M S
S

M S
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i i
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By solving ∆ξ, ξ is updated by:

 x x x¬ + D  (19)

and that makes ξ iteratively move forward to the optimal 
transformation ξ∗.

In contrast to the practical implementation in Hector 
SLAM [5], where fixed iteration step setting is employed to 
evaluate the Gauss-Newton optimization, in addition to 
setting a maximum iteration step (10 in this work), we hereby 
propose a more reasonable stop condition before reaching the 
maximum iteration step, which has been proven to ensure 
sufficient convergence while avoiding unnecessary iterations 
caused by oscillation around the optimal solution:

 � �Dx e<  (20)

where operator ‖∙‖ denotes Frobenius norm, ε is a param-
eter for threshold and is set to 0.001 in this work. Ek is the cost 
function in the kth iteration step.

Real World Experiments
We conducted extensive experimental validations of our 
system including offline SLAM system test on collected data 
as well as real time field experiment in the area around the 
initial autonomous vehicle (AV) pilot test route, a small 
segment in an underserved area of campus designated by The 
Ohio State University, as shown in Figure 7. All the algorithms 
relevant to LIDAR data processing and SLAM as described 
above are implemented in C++ because of its efficiency of real 
time performance. Performances are evaluated between the 
SLAM system proposed in [5] and the extended version 
proposed in this paper. Traditional path following experiment 
result based on high accuracy GPS similar to the previous 
work is compared with this innovative SLAM based path 
following experiment result, demonstrating the feasibility and 
effectiveness of this compounded system. Note that random-
ness is inevitably introduced by probabilistic occupancy grid 
map model in the SLAM system. For this reason, the experi-
ment results are reported based on the median performance 
of several runs.

Real time SLAM algorithm is carried out with an 
I7-6700HQ (8 cores @ 2.60 GHz), NVIDIA Titan X (Pascal)/
PCIe/SSE2 and 4 Gb RAM on the Robot Operating System 
(ROS) [15], an open source operating system providing 
services designed for heterogeneous computer cluster in Linux 
environment. User Datagram Protocol (UDP) communication 
is built up between ROS and MABx for localization informa-
tion transfer. Regional localization information delivered by 
SLAM algorithm is sent to MABx for further decision making 
and control strategy, e.g. longitudinal or lateral control.

SLAM Evaluation
In order to quantitatively evaluate our proposed SLAM system 
against Hector SLAM, both SLAM systems are tested on the 
same LIDAR data collected around our lab, Car-West. Due to 
the absence of “ground truth”, alignment error yielded in both 
algorithms is reported for comparison. Ideally, with sufficient 
accuracy, the alignment error (described in equation (11)) 
should be very small. However, inevitably introduced sensor 
noise and non-smooth approximation of the optimization 
model make the solution of pose estimation only able to 
approach real pose but never perfectly equivalent and hence 
total alignment error always exists. Therefore, in the same 
context, the smaller the alignment error, the higher the 
accuracy that is achieved and hereby we evaluate the perfor-
mance by comparing their alignment error and iterations 
implemented in each alignment, which can reflect their estima-
tion accuracy as well as their convergence speed. Considering 
that offline SLAM accuracy is similar to its real time accuracy, 
this comparison can effectively validate the overall perfor-
mance of our proposed SLAM system against the Hector SLAM.

 FIGURE 7  Autonomous vehicle test route from Car-West to 
Car (scale 1:8000).
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The ultimate map generated by our proposed SLAM 
system is overlapped with the same location obtained from 
Google Earth for comparison convenience as shown in 
Figure 8, where the map generated by our proposed SLAM is 
in shadow and red line is the test trajectory. It is important to 
note that the map from Google Earth is not strictly top down 
view. Thus here a minor shift is necessarily used to keep the 
edges of the mapped buildings consistent with their actual 
corresponding edges in Google Earth. In this experiment, raw 
LIDAR data is initially collected by VLP-16 along the test 
trajectory which starts from the backyard of Car-West, passing 
through an open field which is sufficiently challenging because 
of the limited landscapes for matching alignment and texture-
less wall. Another challenging part of this test trajectory is a 
sharp 180 degree turn in the front of the parking lot of the lab 
building, which demands fast convergence and robustness of 
the nonlinear optimization model implemented in the 
SLAM system.

Figure 9 shows both complete and regional localization 
estimation from the two SLAM systems along the test trajec-
tory. The smoother localization given by our proposed SLAM 

system with the integrated automated drive control systems 
can dramatically improve passenger comfort while taking a 
ride in the shuttle. Table I illustrates the average alignment 
error and average iteration steps required between the two 
SLAM systems. It can be clearly observed that in some runs, 
our proposed SLAM can effectively reduce the alignment 
error to a relatively lower level despite the fact that in almost 
half of the runs the benefit is not distinct. Results of the 
average alignment error from Figure 10 can further prove 
this property. This can be attributed to the defect of this 
optimization based SLAM system where global minimum 
cannot be guaranteed and scan end point outliers can inevi-
tably introduce noise to the system. Therefore, a reliable 
preprocessing model of the scan end points is desired as an 
extension to this framework, which may be an interesting 
topic in future work. Although in our proposed SLAM 
system additional iteration steps are sacrificed for better 
alignment compared with Hector SLAM, in which the itera-
tion step is set to a fixed value and naturally convergence 
cannot be guaranteed, the increased iteration step is still in 
an acceptable range for real time performance according to 
our real-time experiments.

Real Time Path Following 
Performance
In addition to quantitative evaluation of our proposed SLAM 
system, various real world experiments are also conducted to 
validate its feasibility and adaptivity of integration with the 
control system. We first manually drive the shuttle along the 
pre-determined trajectory around our lab building, as shown 
in Figure 11, to collect GPS points, from which the desired 
path is then generated for path following reference.

 FIGURE 8  Generated map overlapped with Google Earth.
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 FIGURE 9  Trajectory comparison between our proposed 
SLAM (blue) with Hector SLAM (red).
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 FIGURE 10  Trajectory on satellite image.
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TABLE 1 Performance comparison between our proposed 
SLAM with Hector SLAM. Alignment error is accumulated error 
of occupancy value, which is dimensionless.

Proposed SLAM Hector SLAM
Average alignment 
error

78.759 84.107

Average iteration 
step

6.557 3.400
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Figures 12 and 13 show the actual path following trajec-
tory performed by our proposed SLAM system and RTK GPS 
separately compared with the desired path. The coordinate of 
starting position is set to the origin in the following plots for 
comparison convenience. It can be observed that similar to 
GPS, SLAM based path following can be achieved comparable 
to GPS based result, though with occasional minor error, 
which again proved the supplemental functionality of our 
proposed SLAM system in GPS not accessible cases. Figure 13 
shows the root-mean-square error (RMSE) along the whole 
path following trajectory performed by SLAM compared with 
the same experiment setting but performed by differential 
GPS. The shuttle speed of both path following approaches are 
kept at an average value of 12 km/h. As can be seen from the 
experimental results, conventional path following that relies 
on highly accurate differential GPS has the expected perfor-
mance with appropriate lateral controller design. The overall 
performance of GPS is better than SLAM, but SLAM based 
path following tends to have even smaller RMSE at some 
regions, e.g. at points of 0.7 × 105, 1.5 × 105, 1.8 × 105 which 
are at the corners of the trajectory. The fact suggests that this 
SLAM system can provide precise estimation of the shuttle 

orientation while there may exist some delay or inaccuracy in 
the orientation angle provided by differential GPS, which is 
computed based on compass. It demonstrates that localization 
and perception system that purely relies on LIDAR can supple-
ment the cases when GPS is not available or a lower cost and 
hence lower accuracy GPS is desirable for intelligent shuttles.

HiL Studies
Hardware in the Loop (HiL) setup is crucial for faster develop-
ment of controllers and algorithms, since it provides a realistic 
virtual proving ground before the implementation and 
deployment phases. To create this realistic virtual proving 
ground, real world scenarios should be replicated with as 
many aspects as possible. This includes emulation of sensors, 
addition of traffic, addition of hardware and replication of real 
world routes. For this paper, the planned actual real-world AV 
shuttle deployment route is selected as a virtual proving ground.

Equipment and Setup
The HiL setup is constructed with hardware as close as possible 
to real-world case. Therefore, MABx is used as a main controller. 
This ECU is also the device we use in our autonomous vehicles 
as low-level controller, which is mentioned in the Hardware and 
Platform section. Since we already develop autonomous driving 
algorithms which runs within this device during the HiL devel-
opment, it allows us to directly implement the algorithms and 
controllers that we developed inside the HiL simulation to a 
real autonomous vehicle. MABx is also connected to a DSRC 
modem similar to the real world case in the HiL simulator. 
Through this modem, it receives the V2X data that is published 
for the vehicles and infrastructure within the simulation. Again, 
similar to the real world case, it is connected to the Scalexio 
computer which mimics the actual vehicle through the 

 FIGURE 11  Desired path compared to our proposed SLAM 
path following trajectory.
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 FIGURE 12  Desired path compared to GPS path 
following trajectory.
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 FIGURE 13  RMSE in lateral direction comparison between 
our proposed SLAM based path following and GPS based 
path following.
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Controller Area Network (CAN) bus. The MABx thinks it is 
connected to a real vehicle while receiving the ego vehicle infor-
mation from CAN bus and publishing actuation commands 
for steering, brake and throttle through the CAN bus.

These commands are picked up by the Scalexio real-time 
vehicle, traffic and sensors simulator. This simulator runs a 
Simulink model with CarSim vehicle dynamics. Vehicle model 
parameters inside CarSim are validated through vehicle 
dynamics experiments previously performed on the real 
vehicle. Therefore, vehicle dynamics simulation provides 
results very close to the real-world. While simulating high-
fidelity vehicle dynamics for ego vehicle, it can also simulate 
roads, sensors, infrastructure through the capabilities of 
CarSim. This feature provides significant advantage since it 
allows us to create numerous test scenarios which have appli-
cations in real world autonomous driving. It is also connected 
to another DSRC modem that publishes V2X information for 
other vehicles and infrastructure that exist inside the simula-
tion environment. All of the DSRC message packets are sent 
within a standard format obtained from SAE J2735 DSRC 
Message Set and using the standard communication rate of 
10 Hz. Overall illustration of the HiL setup and communica-
tion between components are shown in Figure 14.

With this HiL setup, we are able to test numerous kinds 
of different scenarios involving other vehicles, pedestrians 
and road structures, which involves V2X communication. 
Moreover, we are able to test our controllers and autonomous 
driving algorithms and do improvements on them before 
starting road testing.

In this study, the HiL setup discussed above is used to 
provide a virtual proving ground for algorithm and controller 
development before real world deployment of the autonomous 
shuttle. A test scenario is created based on a planned real world 
deployment route, which is explained within the next section, 
followed by discussion of the simulation results.

Test Scenario
A replication of the real world route AV pilot test route was 
created inside CarSim for autonomous driving simulation. 
This route starts from the road in front of the parking lot of 
our research lab building (CAR West) and ends about 0.7 miles 

down the road in front of our main research center (CAR). A 
traffic light is placed on the intersection and vehicle traffic is 
generated within CarSim for main route. Buildings are also 
created as a representation of real ones and placed according 
to their real-world positions. A top-down view of the road 
which is rendered in CarSim, is shown in Figure 15.

The path to be followed is generated from the GPS points 
on the road and vehicle is set to autonomously drive on this 
path, in other words, to follow the route while making deci-
sions according to the situations it comes across during the 
drive. GPS and Leddar sensors are virtually simulated in 
CarSim software while DSRC messages are received through 
real hardware. Therefore, the virtual simulation vehicle is 
equipped with a real DSRC radio, soft GPS and a soft Leddar 
sensor. In this specific scenario, DSRC radio is mainly used 
for determination of the traffic light state in the intersection. 
Leddar sensor is utilized for detection of the distance between 
ego vehicle and preceding vehicle. Since LIDAR emulation is 
currently not available as a solution within CarSim, work is 
still in progress to emulate or simulate LIDAR sensor which 
provides a 3D point cloud data to simulate LIDAR based algo-
rithms such as SLAM in the simulator.

A. Decision Making The vehicle was commanded to 
follow the route while handling some of the situations it may 
come across. For this purpose, a simple decision-making 
strategy is created with three main states. This decision-
making strategy is still work in progress and currently does 
not take all of the possible real-world cases into the account. 
Instead, the scenario is slightly simplified with respect to real 
world conditions in order to use a non-complex decision-
making strategy. These simplifications include the placement 
of the starting and end position onto the main road and 
removal of the intersection cross traffic. These simplifications 
will be removed in further study.

The developed decision making strategy consists of three 
main states. In Cruise Control (CC) state, the vehicle is given 
a velocity profile to follow as a longitudinal control strategy. 
The vehicle follows the route while traveling at the desired 
speed which is decided by this velocity profile, according to 
the map segment the vehicle is currently in. With this velocity 

 FIGURE 14  HiL equipment and communication.
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 FIGURE 15  Top-down view of CAR-CAR West AV 
test route.
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profile, the vehicle can slow down or speed up when necessary, 
according to the road portion it is currently in, and therefore 
can safely approach intersections, sharp curved turns, traffic 
lights and obey traffic speed limits. While carrying out path 
following in CC state, it constantly checks for any DSRC 
messages. In case there is any traffic light nearby on path, 
according to the state of the light it can go to stop state or 
continue. Furthermore, by making use of the Leddar sensor 
information, the vehicle can determine if there is a preceding 
vehicle and according to the distance, it goes to Adaptive 
Cruise Control (ACC) state or Cooperative Adaptive Cruise 
Control (CACC) state in the case of a communicating 
preceding vehicle for car following. In this state, the vehicle 
keeps a safe time gap with the preceding vehicle. The flowchart 
for the simple decision making used is shown in Figure 16.

HiL Simulation Results
After the route is constructed in CarSim and algorithms and 
decision-making is implemented in Simulink, simulation 
testing begins. The vehicle was commanded to follow the route 
while handling the states as is necessary. The speed profile 
shown in Figure 17 is provided to the vehicle to follow while 
it is in CC state.

Speed is decided according to the road segment, where 
these segments are obtained from path generation algorithm 
part. After the simulation, recorded vehicle velocity, vehicle 

decision state (Stop/ACC/CC) and traffic light state (green/
red) are plotted with respect to time as shown in Figure 18.

As seen in Figure 18, the vehicle follows the speed profile 
in CC mode while doing autonomous path following. After 
some time, it comes across a non-communicating preceding 
vehicle which travels at a slower velocity. Instead of following 
the velocity profile, autonomous vehicle goes to ACC mode 
and slows down to adapt to the speed and keep the distance 
between itself and the preceding vehicle constant. Around 
125 second, it comes close to the intersection where there is a 
traffic light which is at red signal state. It waits until the light 
is green and continues its way. This behavior can also be 
confirmed by looking at the velocity and the state of the traffic 
light in Figure 18.

After passing the traffic light, it comes closer to the desti-
nation, slows down and stops. The trajectory of the vehicle is 
also plotted on a satellite image and shown in Figure 19. It is 

 FIGURE 17  Velocity profile with respect to segment.

©
 S

A
E 

In
te

rn
at

io
na

l

 FIGURE 18  Vehicle velocity, behavior and traffic light state 
with respect to simulation time.
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 FIGURE 19  Vehicle trajectory on satellite image.
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 FIGURE 16  Decision making flowchart.
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seen that the vehicle is able to follow the route and autono-
mously handle dynamic driving tasks it can come across while 
travelling through this route. Screenshots from the simulation 
are shown in Figure 20, while the vehicle is doing 
autonomous driving.

Summary/Conclusion
This paper presented preliminary work for a AV shuttle 
deployment in the AV pilot test route of the Ohio State 
University. GPS and LIDAR SLAM are both used for localiza-
tion and path generation. Since GPS based localization and 
path following was presented in our earlier work, this paper 
concentrated on a LIDAR SLAM system which is inherited 
from the Hector SLAM framework and based on the 
Levenberg-Marquardt algorithm. It was demonstrated that 
this LIDAR SLAM algorithm can be used for self-localization 
of our low speed autonomous shuttle. Extensive experiments 
were conducted for offline SLAM performance evaluation as 
well as real world experiments for path following in a parking 
lot for safety. The proposed SLAM system was compared with 
the state of art 2D SLAM approach especially in terms of scan 
alignment accuracy and seen to provide dynamically reason-
able pose estimation. As a pre-requisite to testing autonomous 
driving on the actual AV pilot test route, this route was 

replicated in our HiL simulator for developing and testing low 
level controllers and decision making logic. GPS and Leddar 
sensors, traffic and the traffic light were emulated in the HiL 
simulator while the low level control ECU and the DSRC 
radios used for V2I and V2V communication were real 
hardware. LIDAR sensor emulation work is in progress and 
will allow us to implement LIDAR based algorithms for both 
localization, e.g. SLAM, and obstacle detection and classifica-
tion within the HiL simulator.
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V2X - Vehicle to Everything
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