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Introduction 
 
Digital maps are important for many different aspects of intelligent transportation. They are needed to 
model traffic patterns, to plan infrastructure upkeep, or for navigation for different traffic participants. 
These maps not only need to contain roads and all the transportation relevant objects like lane markings 
and traffic signs, but also their state of repair, compliance with regulations, and suitability for various 
users. The last point is particular important for people who use wheelchairs, they not only need to know 
if there is a sidewalk but also if the sidewalk is wide enough and well maintained. Traditional methods to 
create such maps are manual surveying or surveying vehicles that make use of specialty sensors. These 
methods are often cost prohibitive to keep maps up-to-date.    Our proposed approach is to use 
inexpensive sensors on a fleet of vehicles that drive on the road for other purposes. We built on our 
experience with creating maps of road damage and stop signs. In this work we expand our detection to 
other traffic signs and lane markings and estimate retro-reflectivity of signs. We also want to detect 
damage, vandalism and vegetation overgrowth. We paid particular attention to gather information for 
traffic participants other than drivers by detecting sidewalks and tactile patches. 
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Sidewalks 
Detection of sidewalks in aerial images 
We want to be able to detect all the sidewalks in a city. A good candidate for the raw data are aerial or 
satellite images as they are readily available from web sites like Google Maps. We trained a CNN 
(Multinet1) using Google Map satellite images and a geographical data set from Washington D.C. 
Department of Transportation as the ground truth labels (Figure 1 left and middle).  

 
Figure 1 An aerial image of a D.C. intersection (left) and the corresponding mask image (middle) that represent geographical 
information of the intersection. In the mask image, white, gray, and black pixels represent sidewalks, roads, and background 
respectively. On the right is an example of a classified test image. Red (blue) means high (low) probability of sidewalk.  

After the CNN was trained, we tested it on new aerial images. A typical result can be seen in Figure 1 
(right). The classifier can consistently find the sidewalk. The largest source of errors are trees. The 
reason is that most times trees are background, but in some cases, they can be above the sidewalk or 
above the street.  

Detection of tactile patches 
The same CNN used in the previous section was also used to detect tactile patches in street level 
images. In this case, we had to label the images by hand.  

 
Figure 2 Detection of tactile patches are indicated with bright green. Most of the classification is correct. On the left some areas 
are missing (missed detection) and on the right there are a few false detection.  

Some typical results can be seen in Figure 2. The accuracy of the detection is about 90%. 
 
 

                                                           
1 Teichmann, M., Weber, M., Zoellner, M., Cipolla, R., & Urtasun, R. (2016). MultiNet: Real-time Joint Semantic 
Reasoning for Autonomous Driving. arXiv preprint arXiv:1612.07695. 



Classifying Stop Signs with Neural Decision Tree 
We want to be able to detect stop signs and classify their damage, i.e. we want to distinguish following 6 
cases: 

1. Not Stop Sign 
2. 3- or 4-way Stop Sign 
3. Displaced Stop Sign 
4. Vandalized Stop Sign 
5. Vegetation Covered Stop Sign 
6. Undamaged Stop Sign 

Usually one trains one neural detector with all the available classes. We found that a single neural net to 
categorize all the classes performs poorly, it especially lost accuracy with the first class (not Stop Sign). 
We therefore tested a Neural Net Decision Tree. The idea is that one first determines stop sign vs. not-
stop sign and then determine the sub-categories. This is illustrated in following decision tree, where 
each decision made by a separate neural net: 

 
 



The resulting confusion matrix is as follows: 
 

 predicted 
not 3/4 way displaced vandalized vegetation undamaged 

tr
ue

 
not 518 0 19 5 0 10 
3/4 way 0 170 0 5 0 5 
displaced 0 0 128 0 0 0 
vandalized 0 24 15 108 4 42 
vegetation 0 0 0 0 0 0 
undamaged 0 19 94 47 68 1847 

 
 predicted 

not 3/4 way displaced vandalized vegetation undamaged 

tr
ue

 

not 94% 0% 3% 1% 0% 2% 
3/4 way 0% 94% 0% 3% 0% 3% 
displaced 0% 0% 100% 0% 0% 0% 
vandalized 0% 12% 8% 56% 2% 22% 
vegetation n/a n/a n/a n/a n/a n/a 
undamaged 0% 1% 5% 2% 3% 89% 

 
The system is able to predict most of the signs with about 90% or higher accuracy. It has difficulties 
detecting the vandalized stop signs. There were not enough stop signs with vegetation overgrowth in 
the test set.  

Night Time Stop Sign Detection 
Besides being undamaged it is important for a traffic sign to have good retro-reflectivity. The retro-
reflectivity can be measured directly with a calibrated light source and light meter or the adequate 
brightness of a sign can be evaluated by an inspector driving at night. Such methods are tedious and 
costly. We tested if we can detect traffic signs at night and determine if it is bright enough when 
illuminated by a standard headlight.  
First, we need to detect the traffic sign, in our case a stop sign. When we use a detector that is only 
trained on day images, we get a 92% detection/30% false positive rate. Training with night images 
improves the rates significantly to 98%/5%. In Figure 3 is an example of a false detection and a correct 
detection.  

 
Figure 3 Stop sign detection at night. On the left is one failure case where a red light is mistaken for a stop sign. On the right is a 
correct detection.  



 
Once we have detected the stop sign, we can determine its brightness in the image. When the stop sign 
is directly in front of the vehicle it will be brighter, because the headlights shine directly on it. The 
further the stop sign is to the side, the darker it will be. Since we drive past the signs and record a video 
we have many images (frames) of the sign at various angles.  
Figure 4 shows two examples. One has a stop sign with good retro-reflectivity and the other is faded. For 
both we show the intensities in the RGB channels for various viewing/illumination angles (expressed as 
percentage distance from the edge of the image).  
 

 
Figure 4 Retroreflectivity of the traffic sign are indicated by their brightness. On top right is a sign with good retroreflectivity. 
The intensity of the red channel is high, almost to the point of saturation (value around 255). On the bottom right is a faint stop 
sign. The intensity in the red channel is much lower, around 150.  

One can see intensity dropping for larger angles as expected. More importantly, the absolute intensity is 
significantly lower for the faded stop sign. The drop is most pronounced in the red channel. This of 
course is expected since the stop sign is mostly red.  
 
 
 



Detect and read traffic signs 
Many traffic signs have text on it. From simple texts like “STOP”, “25 mph”, to many words describing 
parking regulation or appealing to good driving behavior (Figure 5). 
 

 
Figure 5 Traffic signs with text. 

 
To detect and understand these signs the object detectors methods described above will not work. One 
needs text detection and recognition. Most common are two step methods. In the first step the 
algorithm finds a box in the image that contains text. In the second step the text is read (optical 
character recognition, OCR).  
We used the Foo & Bar method CRNN2 to detect and recognize text. Their method used quadrangle 
regression network for text detection, and then used homography to transform quadrangle regions to 
rectangles and finally CRNN for recognition. We applied this method to overhead traffic signs and got 
the results shown in : 

 
Figure 6 Reading of traffic signs. On the left is a typical overhead sign. The detected text boxes are in the middle and on the right 
are the recognized words. 

Some of the text it recognizes correctly (“Greenbay”) while it misreads others (“snorth” instead of “43 
North”). It has difficulties with numbers and letters that indicate an exit or road number (“1B”). That 

                                                           
2 https://github.com/bgshih/crnn 



kind of texts were not sufficiently represented in the training data. We therefore implemented scripts 
that can create synthetic texts on traffic signs in real images (Figure 7). 
 

 
Figure 7 A synthetic road sign with text on a real image. 

These images can then be used to better train a classifier that can read traffic signs.  

Semantic segmentation 
In semantic segmentation each pixel in an image is classified. In the next two sub-sections we will 
discuss our work on road detection with MultiNet and detection of many classes with another  

Road detection 
The deep network MultiNet1 can do joint classification, detection and semantic segmentation via a 
unified architecture where the encoder is shared amongst the three tasks. By sharing the encoder the 
network is faster than others. In the schematic below the encoder is the CNN-VGG16, which is then used 
by the fully convolutional networks (FCN): 

 
We trained the network with labeled data from the KITTI dataset3 and with our own labeled data. This 
combined data set gives the best results. Our own data was not large enough and the KITTI data set by 
itself did not generalize completely to our data. The KITTI data was recorded in Germany whereas out 
data is from Pittsburgh and its surrounding. Two example semantic segmentations are shown below:  
 

                                                           
3 http://www.cvlibs.net/datasets/kitti/eval_road.php 
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Figure 8 Semantic segmentation of roads. Red (blue) indicate high (low) probability of being road. 

 
We evaluated the results and achieved an average precision of 92%. 
 

Lane detection and multiple classes 
We are interested in lane markings. They are important for drivers to recognize the lanes of the road. 
They are also a significant maintenance item, on heavily traveled roads like the PA Turnpike they have to 
be repainted twice a year. We want to detect them and in the future we also want to determine any 
damage and loss of retro-reflectivity.  
A schematic of a fully convolutional networks (FCN)4 is shown below 
 

 
 
                                                           
4 Tutorial, CVPR15 Caffe, Jon Long, and Evan Shelhamer. "Fully Convolutional Networks." 



In past years many datasets have been published with semantically labeled images for training and 
testing, but none of them had lane markings labeled. Only recently became the Mapillary dataset5 
available which has lane markings labeled separately from roads.  
We wanted to explore the best way to train a lane marking classifier. Mapillary dataset has 66 different 
classes. The question is if training with only two classes (lane marking and not lane marking) or all 66 
classes simultaneously would give better results. Figure 9 shows the outcome.  
 

 
Figure 9 Top is a raw image. The middle image has the detected lane markings colored in green. The detector was trained with 
two classes. The bottom image shows the result of a detector trained with 66 classes (sky=blue, vegetation=green, road=purple, 
lane markings=while, etc.). 

The top is the raw image. In the middle image the predicted lane markings are colored in green. It gets 
most of the lane markings with a few false detections on the right side. The lower image shows the 
result with all 66 classes. It can predict broad classes like sky and vegetation fairly well, but does 
perform poorly in detecting lane markings.  
Figure 10 shows three more classification results of the 66 classes.  

                                                           
5 https://blog.mapillary.com/product/2017/05/03/mapillary-vistas-dataset.html 



 
Figure 10 Three examples of semantic segmentation. Raw images are on the left and the ground truth is on the right. The results 
are shown for three different amounts of training (30, 90, and 150 epochs). The pixel accuracy for training and validation is on 
the bottom. The detector was trained for 66 classes (sky=blue, vegetation=green, road=purple, lane markings=while, etc.). 

 
In summary we find that for common classes like sky, vegetation and road one gets good results when 
training a model for all classes at the same time. However, for rare and more intricate classes like lane 
markings it is much better to train each class by itself. Of course, this will have the tradeoff that training 
and predicting will take significant more computational time.  

Localization 
The detection of objects for inventory and assessment needs to be accompanied by the location of the 
objects. An estimate within 5-10 m is achieved by GPS. This is good for many cases. But often one wants 
to have better localization. One likes to know which lane the vehicle was traveling in and for high 
accuracy maps localization within about 1 cm is required. With Structure From Motion (SFM) algorithms 
it is possible to accurately align images with each other while at the same time creating a 3D point cloud 
of the objects. We surveyed available open source SFM tools and found ORB-SLAM26 and COLMAP7 the 
best performing and most user-friendly candidates. ORB-SLAM2 is able to run online, i.e. it is designed 
to analyze a video stream in real time. COLMAP’s strength is its robustness to changes in viewpoint, 
illumination, camera and even works with images taken at different times.  
A good SFM reconstruction from a video that was taken while driving in a loop (Figure 11). Also shown is 
a satellite view of the same area.  

                                                           
6 Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization 
Capabilities: https://github.com/raulmur/ORB_SLAM2 
7 https://colmap.github.io/ 



 
Figure 11 Localization and 3D reconstruction with COLMAP. The locations of the individual frames are marked in red. The 3D 
points are small black points. At the bottom is a satellite image of the traversed area. The orange arrows indicate corresponding 
buildings.  

The SFM was able to close the loop and give a good representation of the path. The loop was traversed 
two times and one can see that the two passes are aligned with each other.  
Unfortunately, most of the time the SFM was not able to close the loop and instead got a result like the 
following. The green arrow indicate the series of frames that should have been connected.  



 
Figure 12 Example of unsuccessful loop closure. The green arrow indicates the frames that should be next to each other. 

We suspect that the reason for this problem is the rolling shutter of the smartphone camera. It 
introduces systematic distortions into the images which the standard SFM is most times not able to 
overcome. Overall, we found that COLMAP is somewhat better at dealing with this problem than ORB-
SLAM2. 
Rolling shutter could be dealt with in hardware or in software. The hardware solution is to use a global 
shutter camera. But these cameras are not available in smartphones and in general they have less 
resolution than rolling shutter cameras. It is also possible to correct rolling shutter effects in software. 
This is a tedious and complicated method which can currently only be applied when the images are in a 
video sequence.  

Summary and Conclusion 
The fields of deep learning and 3D reconstruction from images have been rapidly developing. We have 
been updating our detection and analysis tools to take advantage of these new techniques. We showed 
that it is possible to detect and analyze a broad range of road infrastructure, from traffic signs during 
day or night, lane markings, sidewalks, or tactile patches. It is possible to read traffic signs and 
determine if they are damaged. 3D reconstruction is a useful tool to locate images in relation to each 
other. With all these tools it is now possible to create a detailed map of the road infrastructure using 
images captured with a smartphone.  
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